256 resultados para Carranza, Bartolomé de, 1503-1576-Biografías


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The surface modification of a mechanochemically prepared Ag/Al O catalyst compared with catalysts prepared by standard wet impregnated methods has been probed using two-dimensional T -T NMR correlations, HO temperature programmed desorption (TPD) and DRIFTS. The catalysts were examined for the selective catalytic reduction of NO using n-octane in the presence and absence of H. Higher activities were observed for the ball milled catalysts irrespective of whether H was added. This higher activity is thought to be related to the increased affinity of the catalyst surface towards the hydrocarbon relative to water, following mechanochemical preparation, resulting in higher concentrations of the hydrocarbon and lower concentrations of water at the surface. DRIFTS experiments demonstrated that surface isocyanate was formed significantly quicker and had a higher surface concentration in the case of the ball milled catalyst which has been correlated with the stronger interaction of the n-octane with the surface. This increased interaction may also be the cause of the reduced activation barrier measured for this catalyst compared with the wet impregnated system. The decreased interaction of water with the surface on ball milling is thought to reduce the effect of site blocking whilst still providing a sufficiently high surface concentration of water to enable effective hydrolysis of the isocyanate to form ammonia and, thereafter, N. This journal is © The Royal Society of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low temperature, isothermal, gas-phase, recyclable process is described for the partial oxidation of methane to methanol over Cu–ZSM-5. Activation in NO at 150 °C followed by methane reaction and steam extraction (both at 150 °C) allowed direct observation of methanol at the reactor outlet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work comprises the photoactivity assessment of transparent sol–gel TiO2 coatings of various thickness using two test systems. The initial rates of both photocatalytic reactions, namely the oxidative bleaching of Acid Orange 7 (AO7) and the reductive bleaching of 2,6-dichlorindophenol (DCIP) increase linearly with increasing titania film thickness as well as with increasing absorbed light flux. The latter work revealed quantum yields (QY) of 0.19% and 92% for the AO7 and DCIP test system, respectively. The low QY for the AO7 oxidation is due to the combination of a slow irreversible reduction of oxygen and also for the oxidation of AO7, thus favouring the high efficiency for electron–hole recombination that is typical for aqueous organic pollutants. In contrast, the very high QY for the photocatalysed reduction of DCIP is due to the presence of a vast excess of glycerol which traps the photogenerated holes efficiently and so allow time for the slower reduction of dye to take place. Furthermore, the oxidation of glycerol results in the generation of highly reducing R-hydroxyalkyl radicals that are able to also reduce DCIP. As a consequence of this ‘current doubling’ effect, the observed QY (92%) is much higher than the apparent theoretical value of 50%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is an important cause of pulmonary infection in cystic fibrosis (CF). Its correct identification ensures effective patient management and infection control strategies. However, little is known about how often CF sputum isolates are falsely identified as P. aeruginosa. We used P. aeruginosa-specific duplex real-time PCR assays to determine if 2,267 P. aeruginosa sputum isolates from 561 CF patients were correctly identified by 17 Australian clinical microbiology laboratories. Misidentified isolates underwent further phenotypic tests, amplified rRNA gene restriction analysis, and partial 16S rRNA gene sequence analysis. Participating laboratories were surveyed on how they identified P. aeruginosa from CF sputum. Overall, 2,214 (97.7%) isolates from 531 (94.7%) CF patients were correctly identified as P. aeruginosa. Further testing with the API 20NE kit correctly identified only 34 (59%) of the misidentified isolates. Twelve (40%) patients had previously grown the misidentified species in their sputum. Achromobacter xylosoxidans (n = 21), Stenotrophomonas maltophilia (n = 15), and Inquilinus limosus (n = 4) were the species most commonly misidentified as P. aeruginosa. Overall, there were very low rates of P. aeruginosa misidentification among isolates from a broad cross section of Australian CF patients. Additional improvements are possible by undertaking a culture history review, noting colonial morphology, and performing stringent oxidase, DNase, and colistin susceptibility testing for all presumptive P. aeruginosa isolates. Isolates exhibiting atypical phenotypic features should be evaluated further by additional phenotypic or genotypic identification techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent development of the massive multiple-input multiple-output (MIMO) paradigm, has been extensively based on the pursuit of favorable propagation: in the asymptotic limit, the channel vectors become nearly orthogonal and interuser interference tends to zero [1]. In this context, previous studies
have considered fixed inter-antenna distance, which implies an increasing array aperture as the number of elements increases. Here, we focus on a practical, space-constrained topology, where an increase in the number of antenna elements in a fixed total space imposes an inversely proportional decrease in the inter-antenna distance. Our analysis shows that, contrary to existing studies, inter-user interference does not vanish in the massive MIMO regime, thereby creating a saturation effect on the achievable rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small-scale, decentralized and community-owned renewable energy is widely acknowledged to be a desirable feature of low carbon futures, but faces a range of challenges in the context of conventional, centralized energy systems. This paper draws on transition frameworks to investigate why the UK has been an inhospitable context for community-owned renewables and assesses whether anything fundamental is changing in this regard. We give particular attention to whether political devolution, the creation of elected governments for Scotland, Wales and Northern Ireland, has affected the trajectory of community renewables. Our analysis notes that devolution has increased political attention to community renewables, including new policy targets and support schemes. However, these initiatives are arguably less important than the persistence of key features of socio-technical regimes: market support systems for renewable energy and land-use planning arrangements that systemically favour major projects and large corporations, and keep community renewables to the margins. There is scope for rolling out hybrid pathways to community renewables, via joint ownership or through community benefit funds, but this still positions community energy as an adjunct to energy pathways dominated by large, corporate generation facilities

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The end of Dennard scaling has pushed power consumption into a first order concern for current systems, on par with performance. As a result, near-threshold voltage computing (NTVC) has been proposed as a potential means to tackle the limited cooling capacity of CMOS technology. Hardware operating in NTV consumes significantly less power, at the cost of lower frequency, and thus reduced performance, as well as increased error rates. In this paper, we investigate if a low-power systems-on-chip, consisting of ARM's asymmetric big.LITTLE technology, can be an alternative to conventional high performance multicore processors in terms of power/energy in an unreliable scenario. For our study, we use the Conjugate Gradient solver, an algorithm representative of the computations performed by a large range of scientific and engineering codes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a novel doped titania immobilised thin film multi tubular photoreactor which has been developed for use with liquid, vapour or gas phase media. In designing photocatalytic reactors measuring active surface area of photocatalyst within the unit is one of the critical design parameters. This dictate greatly limits the applicability of any semi-conductor photocatalyst in industrial applications, as a large surface area equates to a powder catalyst. This demonstration of a thin film coating, doped with a rare earth element, novel photoreactor design produces a photocatalytic degradation of a model pollutant (methyl orange) which displayed a comparable degradation achieved with P25 TiO2. The use of lanthanide doping is reported here in the titania sol gel as it is thought to increase the electron hole separation therefore widening the potential useful wavelengths within the electromagnetic spectrum. Increasing doping from 0.5% to 1.0% increased photocatalytic degradation by ∼17% under visible irradiation. A linear relationship has been seen between increasing reactor volume and degradation which would not normally be observed in a typical suspended reactor system. © 2012 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of controlled periodic illumination with UV LEDs for enhancing photonic efficiency of photocatalytic decomposition processes in water has been investigated using methyl orange as a model compound. The impact of the length of light and dark time periods (T ON/T OFF times) on photodegradation and photonic efficiency using a UV LED-illuminated photoreactor has been studied. The results have shown an inverse dependency of the photonic efficiency on duty cycle and a very little effect on T ON or T OFF time periods, indicating no effect of rate-limiting steps through mass diffusion or adsorption/desorption in the reaction. For this reactor, the photonic efficiency under controlled periodic illumination (CPI) matches to that of continuous illumination, for the same average UV light intensities. Furthermore, under CPI conditions, the photonic efficiency is inversely related to the average UV light intensity in the reactor, in the millisecond time regime. This is the first study that has investigated the effect of controlled periodic illumination using ultra band gap UV LED light sources in the photocatalytic destruction of dye compounds using titanium dioxide. The results not only enhance the understanding of the effect of periodic illumination on photocatalytic processes but also provide a greater insight to the potential of these light sources in photocatalytic reactions. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously reported the effectiveness of TiO2 photocatalysis in the destruction of species generated by cyanobacteria, specifically geosmin and microcystin-LR. In this paper we report an investigation of factors which influence the rate of the toxin destruction at the catalyst surface. A primary kinetic solvent isotope effect of approximately 1.5 was observed when the destruction was performed in a heavy water solvent. This is in contrast to previous reports of a solvent isotope effect of approximately 3, however, these studies were undertaken with a different photocatalyst material. The solvent isotope effect therefore appears to be dependent on the photocatalyst material used. The results of the study support the theory that the photocatalytic decomposition occurs on the catalyst surface rather than in the bulk of the solution. Furthermore it appears that the rate determining step is not oxygen reduction as previously reported. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) photocatalysis has been used to initiate the destruction of nodularin, a natural hepatotoxin produced by cyanobacteria. The destruction process was monitored using liquid chromatography-mass spectrometry analysis which has also enabled the identification of a number of the photocatalytic decomposition products. The reduction in toxicity following photocatalytic treatment was evaluated using protein phosphatase inhibition assay, which demonstrated that the destruction of nodularin was paralleled by an elimination of toxicity. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geosmin (GSM) and 2-methylisoborneol (MIB) are semi-volatile compounds produced by cyanobacteria in surface waters. These compounds present problems to the drinking water industry and in aquaculture because they can taint water and fish producing an earthy-musty flavour. This paper presents an initial study on the use of TiO2 photocatalysis for the destruction of these compounds in water. The process proved effective with the complete destruction of MIB and GSM being achieved within 60 min. These results suggest that TiO2 photocatalysis will be a successful method for removal of taint compounds from potable water supplies and fish farms. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcystins are a family of hepatotoxic peptides produced by freshwater cyanobacteria. Their occurrence in drinking water is of concern since chronic exposure to these toxins causes tumor promotion. It is therefore essential to establish a reliable treatment strategy that will ensure their removal from potable water. We have previously described the rapid destruction of microcystin-LR using TiO2 photocatalysis, however, since there are at least 70 microcystin variants it is essential that the destruction of a number of microcystins be evaluated. In this study the dark adsorption and destruction of four microcystins was followed over a range of pH. All four microcystins were destroyed although the efficiency of their removal varied. The two more hydrophobic microcystins (-LW and -LF) were found to have high dark adsorption (98 and 91% at pH 4) in contrast to microcystin-RR, which was found to have almost no (only 2-3%) dark adsorption across all pH.