239 resultados para Atomic medium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel strategy for the controlled synthesis of 2D MoS<inf>2</inf>/C hybrid nanosheets consisting of the alternative layer-by-layer interoverlapped single-layer MoS<inf>2</inf> and mesoporous carbon (m-C) is demonstrated. Such special hybrid nanosheets with a maximized MoS<inf>2</inf>/m-C interface contact show very good performance for lithium-ion batteries in terms of high reversible capacity, excellent rate capability, and outstanding cycling stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pilot study to investigate the effects of mathematics peer tutoring in Irish medium primary schools was undertaken. Five schools and 90 students took part in the pilot. Materials and resources that had previously been shown to work in English medium Scottish schools were translated into Irish by CCEA. Irish medium teachers attended three professional development days. Teachers implemented the peer tutoring techniques during mathematics lessons during a period of 16 weeks. Changes in attainment were measures with an Irish translation of the Scottish Survey of Achievement Mathematics Test. Results were positive. Student attainment was significantly raised during the 16-week implementation period by over one standard deviation. This equated to one-year’s worth of mathematics development during this time period. Results must be treated with caution. No control group was used in the pilot study. However, results are very promising and indicate that reciprocal role peer tutoring may be a useful pedagogy in Irish medium education. Further work would be required to establish this definitively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blocking of ion transport at interfaces strongly limits the performance of electrochemical nanodevices for energy applications. The barrier is believed to arise from space-charge regions generated by mobile ions by analogy to semiconductor junctions. Here we show that something different is at play by studying ion transport in a bicrystal of yttria (9% mol) stabilized zirconia (YSZ), an emblematic oxide ion conductor. Aberration-corrected scanning transmission electron microscopy (STEM) provides structure and composition at atomic resolution, with the sensitivity to directly reveal the oxygen ion profile. We find that Y segregates to the grain boundary at Zr sites, together with a depletion of oxygen that is confined to a small length scale of around 0.5 nm. Contrary to the main thesis of the space-charge model, there exists no evidence of a long-range O vacancy depletion layer. Combining ion transport measurements across a single grain boundary by nanoscale electrochemical strain microscopy (ESM), broadband dielectric spectroscopy measurements, and density functional calculations, we show that grain-boundary-induced electronic states act as acceptors, resulting in a negatively charged core. Ultimately, it is this negative charge which gives rise to the barrier for ion transport at the grain boundary

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al2O3 interfacial layer (∼2.8 nm). For diodes with an Al2O3 interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO2 interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamical effects of non-conservative forces in long, defect free atomic wires are investigated. Current flow through these wires is simulated and we find that during the initial transient, the kinetic energies of the ions are contained in a small number of phonon modes, closely clustered in frequency. These phonon modes correspond to the waterwheel modes determined from preliminary static calculations. The static calculations allow one to predict the appearance of non-conservative effects in advance of the more expensive real-time simulations. The ion kinetic energy redistributes across the band as non-conservative forces reach a steady state with electronic factional forces. The typical ion kinetic energy is found to decrease with system length, increase with atomic mass, and its dependence on bias, mass and length is supported with a pen and paper model. This paper highlights the importance of non-conservative forces in current carrying devices and provides criteria for the design of stable atomic wires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ∼2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium is a worldwide consortium which federates atomic and molecular databases through an e-science infrastructure and an organisation to support this activity. About 90% of the inter-connected databases handle data that are used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics. Recently the VAMDC Consortium has connected databases from the radiation damage and the plasma communities, as well as promoting the publication of data from Indian institutes. This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research. It is noted that the VAMDC Consortium strongly advocates that authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petaflop architectures are currently being utilized efficiently to perform large scale computations in Atomic, Molecular and Optical Collisions. We solve the Schr\"odinger or Dirac equation for the appropriate collision problem using the R-matrix or R-matrix with pseudo-states approach. We briefly outline the parallel methodology used and implemented for the current suite of Breit-Pauli and DARC codes. In this report, various examples are shown from our theoretical results compared with experimental results obtained from Synchrotron Radiation facilities where the Cray architecture at HLRS is playing an integral part in our computational projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New scaled carbon atomic electron-impact excitation data is utilized to evaluate comparisons between experimental measurements and fluid emission modeling of detached plasmas at DIII-D. The C I and C II modeled emission lines for 909.8 and 514.7 nm were overestimated by a factor of 10-20 than observed experimentally for the inner leg, while the outer leg was within a factor of 2. Due to higher modeled emissions, a previous study using the UEDGE code predicted that a higher amount of carbon was required to achieve a detached outboard divertor plasma in L-mode at DIII-D. The line emission predicted by using the new scaled carbon data yields closer results when compared against experiment. We also compare modeling and measurements of Dα emission from neutral deuterium against predictions from newly calculated R-Matrix with pseudostates data available at the ADAS database. © 2013 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evaluating the ratio of selected helium lines allows for measurement of electron densities and temperatures. This technique is applied for L-mode plasmas at TEXTOR (O. Schmitz et al., Plasma Phys. Control. Fusion 50 (2008) 115004). We report our first efforts to extend it to H-mode plasma diagnostics in DIII-D. This technique depends on the accuracy of the atomic data used in the collisional radiative model (CRM). We present predictions for the electron temperatures and densities by using recently calculated R-Matrix With Pseudostates (RMPS) and Convergent Close-Coupling (CCC) electron-impact excitation and ionization data. We include contributions from higher Rydberg states by means of the projection matrix. These effects become significant for high electron density conditions, which are typical in H-mode. We apply a non-equilibrium model for the time propagation of the ionization balance to predict line emission profiles from experimental H-mode data from DIII-D. © 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the focus of ITER on the transport and emission properties of tungsten, generating atomic data for complex species has received much interest. Focusing on impurity influx diagnostics, we discuss recent work on heavy species. Perturbative approaches do not work well for near neutral systems so non-perturbative data are required, presenting a particular challenge for these influx diagnostics. Recent results on Mo+ are given as an illustration of how the diagnostic applications can guide the theoretical calculations for such systems.