243 resultados para Arsenic tolerance
Resumo:
Phytochelatins (PCs) are required for arsenic (As) detoxification in nontolerant plants. In addition, a role for PCs in arsenate tolerance has recently been proven, with tolerant plants able to accumulate significantly higher concentrations of As-PC complexes at equivalent levels of stress than nontolerant plants. The relationship between arsenate influx and PC production in tolerant and non-tolerant Holcus lanatus plants was determined in this study, along with an investigation of the effect of inhibition of PC synthesis by buthionine sulfoximine (BSO) on arsenate tolerance. A strong correlation between PC production and arsenate influx was demonstrated in arsenate-tolerant plants. In addition, inhibition of PC synthesis by BSO in tolerant plants increased arsenate sensitivity to that of the nontolerant clone. This dramatic reduction in tolerance proves that PC production is an essential component of the arsenate tolerance mechanism in H. lanatus. This study proposes that while there is a single major gene for arsenate tolerance, hypostatic modifiers are also in operation, affecting the expression of the tolerance character. © New Phytologist (2002).
Resumo:
Long-term use of arsenic contaminated groundwater to irrigate crops, especially paddy rice (Oryza sativa L.) has resulted in elevated soil arsenic levels in Bangladesh. There is, therefore, concern regarding accumulation of arsenic in rice grown on these soils. A greenhouse pot experiment was conducted to evaluate the impact of arsenic-contaminated irrigation water on the growth and uptake of arsenic into rice grain, husk, straw and root. There were altogether 10 treatments which were a combination of five arsenate irrigation water concentrations (0-8 mg As l-1) and two soil phosphate amendments. Use of arsenate containing irrigation water reduced plant height, decreased rice yield and affected development of root growth. Arsenic concentrations in all plant parts increased with increasing arsenate concentration in irrigation water. However, arsenic concentration in rice grain did not exceed the maximum permissible limit of 1.0 mg As kg-1. Arsenic accumulation in rice straw at very high levels indicates that feeding cattle with such contaminated straw could be a direct threat for their health and also, indirectly, to human health via presumably contaminated bovine meat and milk. Phosphate application neither showed any significant difference in plant growth and development, nor in As concentrations in plant parts.
Resumo:
Elevated soil arsenic levels resulting from long-term use of arsenic contaminated ground for irrigation in Bangladesh may inhibit seed germination and seedling establishment of rice, the country's main food crop. A germination study on rice seeds and a short-term toxicity experiment with different concentrations of arsenite and arsenate on rice seedlings were conducted. Percent germination over control decreased significantly with increasing concentrations of arsenite and arsenate. Arsenite was found to be more toxic than arsenate for rice seed germination. There were varietal differences among the test varieties in response to arsenite and arsenate exposure. The performance of the dry season variety Purbachi was the best among the varieties. Germination of Purbachi was not inhibited at all up to 4 mg l-1 arsenite and 8 mg l-1 arsenate treatment. Root tolerance index (RTI) and relative shoot height (RSH) for rice seedlings decreased with increasing concentrations of arsenite and arsenate. Reduction of RTI caused by arsenate was higher than that of arsenite. In general, dry season varieties have more tolerance to arsenite or arsenate than the wet season varieties.
Resumo:
Elevation of arsenic levels in soils causes considerable concern with respect to plant uptake and subsequent entry into wildlife and human food chains, Arsenic speciation in the environment is complex, existing in both inorganic and organic forms, with interconversion between species regulated by biotic and abiotic processes. To understand and manage the risks posed by soil arsenic it is essential to know how arsenic is taken up by the roots and metabolized within plants. Some plant species exhibit phenotypic variation in response to arsenic species, which helps us to understand the toxicity of arsenic and the way in which plants have evolved arsenic resistances. This knowledge, for example, could be used produce plant cultivars that are more arsenic resistant or that have reduced arsenic uptake. This review synthesizes current knowledge on arsenic uptake, metabolism and toxicity for arsenic resistant and nonresistant plants, including the recently discovered phenomenon of arsenic hyperaccumulation in certain fern species. The reasons why plants accumulate and metabolize arsenic are considered in an evolutionary context. © New Phytologist.
Resumo:
The biochemical responses of Holcus lanatus L. to copper and arsenate exposure were investigated in arsenate-tolerant and -non-tolerant plants from uncontaminated and arsenic/copper-contaminated sites. Increases in lipid peroxidation, superoxide dismutase (SOD) activity and phytochelatin (PC) production were correlated with increasing copper and arsenate exposure. In addition, significant differences in biochemical responses were observed between arsenate-tolerant and -non-tolerant plants. Copper and arsenate exposure led to the production of reactive oxygen species, resulting in significant lipid peroxidation in non-tolerant plants. However, SOD activity was suppressed upon metal exposure, possibly due to interference with metallo-enzymes. It was concluded that in non-tolerant plants, rapid arsenate influx resulted in PC production, glutathione depletion and lipid peroxidation. This process would also occur in tolerant plants, but by decreasing the rate of influx, they were able to maintain their constitutive functions, detoxify the metals though PC production and quench reactive oxygen species by SOD activity.
Resumo:
The effects of potentially toxic metals on ectomycorrhizal (ECM) fungi and their higher plant hosts are examined in this review. Investigations at a species and community level have revealed wide inter- and intraspecific variation in sensitivity to metals. Adaptive and constitutive mechanisms of ECM tolerance are proposed and discussed in relation to proven tolerance mechanisms in bacteria, yeasts and plants. Problems with methodology and research priorities are highlighted. These include the need for a detailed understanding of the genetic basis of tolerance in the ECM symbiosis, and for studies of ECM community dynamics in polluted sites.
Resumo:
Uptake kinetics of arsenate were determined in arsenate tolerant and non-tolerant clones of the grass Deschampsia cespitosa under differing root phosphorus status to investigate the mechanism controlling the suppression of arsenate influx observed in tolerant clones. Influx was always lower in tolerants compared to non-tolerants. Short term influx of arsenate by the high affinity uptake system in both tolerant clones was relatively insensitive to root phosphorus status. This was in contrast to the literature where the regulation of the phosphate (arsenate) uptake system is normally much more responsive to plant phosphorus status. The low affinity uptake system in both tolerant and non-tolerant clones, unlike the high affinity uptake system, was more closely regulated by root phosphate status and was repressed to a much greater degree under increasing root phosphorus levels than the high affinity system. © 1994 Kluwer Academic Publishers.
Resumo:
The polymorphism of arsenate tolerance in a Holcus lanatus L. population from an uncontaminated soil was investigated and a high percentage of tolerant individuals (65%) was found in the population studied. Influx of arsenate was highly correlated to arsenate tolerance within the population, with the most tolerant individuals having the lowest rates of arsenate influx. Isotherms for the high affinity arsenate uptake systems were determined in six tolerant and six non-tolerant genotypes. Tolerant plants had the lowest rates of arsenate influx. This was achieved by adaptation of the Vmax of arsenate influx with the Vmax of the high affinity uptake system saturating at lower substrate concentrations in the tolerant plants. The polymorphism is discussed with relation to adaptation to the extreme environments to which the plants are subjected on mine-spoil soils. © 1992 Kluwer Academic Publishers.
Resumo:
In Holcus lanatus L. phosphate and arsenate are taken up by the same transport system. Short-term uptake kinetics of the high affinity arsenate transport system were determined in excised roots of arsenate-tolerant and non-tolerant genotypes. In tolerant plants the Vmax of ion uptake in plants grown in phosphate-free media was decreased compared to non-tolerant plants, and the affinity of the uptake system was lower than in the non-tolerant plants. Both the reduction in Vmax and the increase in Km led to reduced arsenate influx into tolerant roots. When the two genotypes were grown in nutrient solution containing high levels of phosphate, there was little change in the uptake kinetics in tolerant plants. In non-tolerant plants, however, there was a marked decrease in the Vmax to the level of the tolerant plants but with little change in the Km. This suggests that the low rate of arsenate uptake over a wide range of differing root phosphate status is due to loss of induction of the synthesis of the arsenate (phosphate) carrier. © 1992 Oxford University Press.
Resumo:
The end of Dennard scaling has promoted low power consumption into a firstorder concern for computing systems. However, conventional power conservation schemes such as voltage and frequency scaling are reaching their limits when used in performance-constrained environments. New technologies are required to break the power wall while sustaining performance on future processors. Low-power embedded processors and near-threshold voltage computing (NTVC) have been proposed as viable solutions to tackle the power wall in future computing systems. Unfortunately, these technologies may also compromise per-core performance and, in the case of NTVC, xreliability. These limitations would make them unsuitable for HPC systems and datacenters. In order to demonstrate that emerging low-power processing technologies can effectively replace conventional technologies, this study relies on ARM’s big.LITTLE processors as both an actual and emulation platform, and state-of-the-art implementations of the CG solver. For NTVC in particular, the paper describes how efficient algorithm-based fault tolerance schemes preserve the power and energy benefits of very low voltage operation.
Resumo:
Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motor (SRM) is one of the promising motor for such applications. This paper presents a novel SRM fault-diagnosis and fault-tolerance operation solution. Based on the traditional asymmetric half-bridge topology for the SRM driving, the central tapped winding of the SRM in modular half-bridge configuration are introduced to provide fault-diagnosis and fault-tolerance functions, which are set idle in normal conditions. The fault diagnosis can be achieved by detecting the characteristic of the excitation and demagnetization currents. An SRM fault-tolerance operation strategy is also realized by the proposed topology, which compensates for the missing phase torque under the open-circuit fault, and reduces the unbalanced phase current under the short-circuit fault due to the uncontrolled faulty phase. Furthermore, the current sensor placement strategy is also discussed to give two placement methods for low cost or modular structure. Simulation results in MATLAB/Simulink and experiments on a 750-W SRM validate the effectiveness of the proposed strategy, which may have significant implications and improve the reliability of EVs/HEVs.
Resumo:
BACKGROUND: Acute promyelocytic leukaemia is a chemotherapy-sensitive subgroup of acute myeloid leukaemia characterised by the presence of the PML-RARA fusion transcript. The present standard of care, chemotherapy and all-trans retinoic acid (ATRA), results in a high proportion of patients being cured. In this study, we compare a chemotherapy-free ATRA and arsenic trioxide treatment regimen with the standard chemotherapy-based regimen (ATRA and idarubicin) in both high-risk and low-risk patients with acute promyelocytic leukaemia.
METHODS: In the randomised, controlled, multicentre, AML17 trial, eligible patients (aged ≥16 years) with acute promyelocytic leukaemia, confirmed by the presence of the PML-RARA transcript and without significant cardiac or pulmonary comorbidities or active malignancy, and who were not pregnant or breastfeeding, were enrolled from 81 UK hospitals and randomised 1:1 to receive treatment with ATRA and arsenic trioxide or ATRA and idarubicin. ATRA was given to participants in both groups in a daily divided oral dose of 45 mg/m(2) until remission, or until day 60, and then in a 2 weeks on-2 weeks off schedule. In the ATRA and idarubicin group, idarubicin was given intravenously at 12 mg/m(2) on days 2, 4, 6, and 8 of course 1, and then at 5 mg/m(2) on days 1-4 of course 2; mitoxantrone at 10 mg/m(2) on days 1-4 of course 3, and idarubicin at 12 mg/m(2) on day 1 of the final (fourth) course. In the ATRA and arsenic trioxide group, arsenic trioxide was given intravenously at 0·3 mg/kg on days 1-5 of each course, and at 0·25 mg/kg twice weekly in weeks 2-8 of course 1 and weeks 2-4 of courses 2-5. High-risk patients (those presenting with a white blood cell count >10 × 10(9) cells per L) could receive an initial dose of the immunoconjugate gemtuzumab ozogamicin (6 mg/m(2) intravenously). Neither maintenance treatment nor CNS prophylaxis was given to patients in either group. All patients were monitored by real-time quantitative PCR. Allocation was by central computer minimisation, stratified by age, performance status, and de-novo versus secondary disease. The primary endpoint was quality of life on the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30 global health status. All analyses are by intention to treat. This trial is registered with the ISRCTN registry, number ISRCTN55675535.
FINDINGS: Between May 8, 2009, and Oct 3, 2013, 235 patients were enrolled and randomly assigned to ATRA and idarubicin (n=119) or ATRA and arsenic trioxide (n=116). Participants had a median age of 47 years (range 16-77; IQR 33-58) and included 57 high-risk patients. Quality of life did not differ significantly between the treatment groups (EORTC QLQ-C30 global functioning effect size 2·17 [95% CI -2·79 to 7·12; p=0·39]). Overall, 57 patients in the ATRA and idarubicin group and 40 patients in the ATRA and arsenic trioxide group reported grade 3-4 toxicities. After course 1 of treatment, grade 3-4 alopecia was reported in 23 (23%) of 98 patients in the ATRA and idarubicin group versus 5 (5%) of 95 in the ATRA and arsenic trioxide group, raised liver alanine transaminase in 11 (10%) of 108 versus 27 (25%) of 109, oral toxicity in 22 (19%) of 115 versus one (1%) of 109. After course 2 of treatment, grade 3-4 alopecia was reported in 25 (28%) of 89 patients in the ATRA and idarubicin group versus 2 (3%) of 77 in the ATRA and arsenic trioxide group; no other toxicities reached the 10% level. Patients in the ATRA and arsenic trioxide group had significantly less requirement for most aspects of supportive care than did those in the ATRA and idarubicin group.
INTERPRETATION: ATRA and arsenic trioxide is a feasible treatment in low-risk and high-risk patients with acute promyelocytic leukaemia, with a high cure rate and less relapse than, and survival not different to, ATRA and idarubicin, with a low incidence of liver toxicity. However, no improvement in quality of life was seen.
Resumo:
Background: Large-scale biological jobs on high-performance computing systems require manual intervention if one or more computing cores on which they execute fail. This places not only a cost on the maintenance of the job, but also a cost on the time taken for reinstating the job and the risk of losing data and execution accomplished by the job before it failed. Approaches which can proactively detect computing core failures and take action to relocate the computing core's job onto reliable cores can make a significant step towards automating fault tolerance. Method: This paper describes an experimental investigation into the use of multi-agent approaches for fault tolerance. Two approaches are studied, the first at the job level and the second at the core level. The approaches are investigated for single core failure scenarios that can occur in the execution of parallel reduction algorithms on computer clusters. A third approach is proposed that incorporates multi-agent technology both at the job and core level. Experiments are pursued in the context of genome searching, a popular computational biology application. Result: The key conclusion is that the approaches proposed are feasible for automating fault tolerance in high-performance computing systems with minimal human intervention. In a typical experiment in which the fault tolerance is studied, centralised and decentralised checkpointing approaches on an average add 90% to the actual time for executing the job. On the other hand, in the same experiment the multi-agent approaches add only 10% to the overall execution time