466 resultados para Apoptosis . Autophagy . Diabetic retinopathy .


Relevância:

20.00% 20.00%

Publicador:

Resumo:

DIN (diabetic nephropathy) is the leading cause of end-stage renal disease worldwide and develops in 25-40% of patients with Type 1 or Type 2 diabetes mellitus. Elevated blood glucose over long periods together with glomerular hypertension leads to progressive glomerulosclerosis and tubulointerstitial fibrosis in susceptible individuals. Central to the pathology of DIN are cytokines and growth factors such as TGF-beta (transforming growth factor beta) superfamily members, including BMPs (bone morphogenetic protein) and TGF-beta 1, which play key roles in fibrogenic responses of the kidney, including podocyte loss, mesangial cell hypertrophy, matrix accumulation and tubulointerstitial fibrosis. Many of these responses can be mimicked in in vitro models of cells cultured in high glucose. We have applied differential gene expression technologies to identify novel genes expressed in in vitro and in vivo models of DN and, importantly, in human renal tissue. By mining these datasets and probing the regulation of expression and actions of specific molecules, we have identified novel roles for molecules such as Gremlin, IHG-1 (induced in high glucose-1) and CTGF (connective tissue growth factor) in DIN and potential regulators of their bioactions.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background <br/>The abnormal regulation of neutrophil apoptosis may contribute to the ineffective resolution of inflammation in chronic lung diseases. Multiple signalling pathways are implicated in regulating granulocyte apoptosis, in particular, NF?B (nuclear factor-kappa B) signalling which delays constitutive neutrophil apoptosis. Although some studies have suggested a dysregulation in the apoptosis of airway cells in chronic obstructive pulmonary disease (COPD), no studies to date have directly investigated if NF?B is associated with apoptosis of airway neutrophils from COPD patients. The objectives of this study were to examine spontaneous neutrophil apoptosis in stable COPD subjects (n = 13), healthy smoking controls (n = 9) and non-smoking controls (n = 9) and to investigate whether the neutrophil apoptotic process in inflammatory conditions is associated with NF?B activation. <br/> <br/>Methods <br/>Analysis of apoptosis in induced sputum was carried out by 3 methods; light microscopy, Annexin V/Propidium iodide and the terminal transferase-mediated dUTP nick end-labeling (TUNEL) method. Activation of NF?B was assessed using a flow cytometric method and the phosphorylation state of I?Ba was carried out using the Bio-Rad Bio-Plex phosphoprotein I?Ba assay. <br/> <br/>Results <br/>Flow cytometric analysis showed a significant reduction in the percentage of sputum neutrophils undergoing spontaneous apoptosis in healthy smokers and subjects with COPD compared to non-smokers (p &lt; 0.001). Similar findings were demonstrated using the Tunel assay and in the morphological identification of apoptotic neutrophils. A significant increase was observed in the expression of both the p50 (p = 0.006) and p65 (p = 0.006) subunits of NF?B in neutrophils from COPD subjects compared to non-smokers. <br/> <br/>Conclusion <br/>These results demonstrate that apoptosis is reduced in the sputum of COPD subjects and in healthy control smokers and may be regulated by an associated activation of NF?B. <br/> <br/>

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. Bone marrowâderived endothelial progenitor cells (EPCs) contribute to vascular repair although it is uncertain how local endothelial cell apoptosis influences their reparative function. This study was conducted to determine how the presence of apoptotic bodies at sites of endothelial damage may influence participation of EPCs in retinal microvascular repair.<br/><br/>METHODS. Microlesions of apoptotic cell death were created in monolayers of retinal microvascular endothelial cells (RMECs) by using the photodynamic drug verteporfin. The adhesion of early-EPCs to these lesions was studied before detachment of the apoptotic cells or after their removal from the wound site. Apoptotic bodies were fed to normal RMECs and mRNA levels for adhesion molecules were analyzed.<br/><br/>RESULTS. Endothelial lesions where apoptotic bodies were left attached at the wound site showed a fivefold enhancement in EPC recruitment (P &lt; 0.05) compared with lesions where the apoptotic cells had been removed. In intact RMEC monolayers exposed to apoptotic bodies, expression of ICAM, VCAM, and E-selectin was upregulated by 5- to 15-fold (P &lt; 0.05â0.001). EPCs showed a characteristic chemotactic response (P &lt; 0.05) to conditioned medium obtained from apoptotic bodies, whereas analysis of the medium showed significantly increased levels of VEGF, IL-8, IL-6, and TNF-a when compared to control medium; SDF-1 remained unchanged.<br/><br/>CONCLUSIONS. The data indicate that apoptotic bodies derived from retinal capillary endothelium mediate release of proangiogenic cytokines and chemokines and induce adhesion molecule expression in a manner that facilitates EPC recruitment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Diabetes mellitus (DM) causes multiple dysfunctions including circulatory disorders such as cardiomyopathy, angiopathy, atherosclerosis and arterial hypertension. Rho kinase (ROCK) and protein kinase C (PKC) regulate vascular smooth muscle (VSM) Ca(2+) sensitivity, thus enhancing VSM contraction, and up-regulation of both enzymes in DM is well known. We postulated that in DM, Ca(2+) sensitization occurs in diabetic arteries due to increased ROCK and/or PKC activity. EXPERIMENTAL APPROACH: Rats were rendered hyperglycaemic by i.p. injection of streptozotocin. Age-matched control tissues were used for comparison. Contractile responses to phenylephrine (Phe) and different Ca(2+) concentrations were recorded, respectively, from intact and chemically permeabilized vascular rings from aorta, tail and mesenteric arteries. KEY RESULTS: Diabetic tail and mesenteric arteries demonstrated markedly enhanced sensitivity to Phe while these changes were not observed in aorta. The ROCK inhibitor HA1077, but not the PKC inhibitor chelerythrine, caused significant reduction in sensitivity to agonist in diabetic vessels. Similar changes were observed for myofilament Ca(2+) sensitivity, which was again enhanced in DM in tail and mesenteric arteries, but not in aorta, and could be reduced by both the ROCK and PKC blockers. CONCLUSIONS AND IMPLICATIONS: We conclude that in DM enhanced myofilament Ca(2+) sensitivity is mainly manifested in muscular-type blood vessels and thus likely to contribute to the development of hypertension. Both PKC and, in particular, ROCK are involved in this phenomenon. This highlights their potential usefulness as drug targets in the pharmacological management of DM-associated vascular dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loci contributing to complex disease have been identified by focusing on genome-wide scans utilising non-synonymous single nucleotide polymorphisms (nsSNPs). We employed Illuminaâs HNS12 BeadChip (13,917 high-value SNPs) which was specifically designed to capture nsSNPs and ideally complements more dense genome-wide association studies that fail to consider many of these putatively functional variants. The HNS12 panel also includes 870 tag SNPs covering the major histocompatibility region. All individuals genotyped in this study were Caucasians with (cases) and without (controls) diabetic nephropathy. About 449 individuals with type 2 diabetes (203 cases, 246 controls) were genotyped in the initial study. 1,467 individuals with type 1 diabetes (718 cases, 749 controls) were genotyped in the follow up study. 11,152 SNPs were successfully analysed and ranked for association with diabetic nephropathy based on significance (P) values. The top ranked 32 SNPs were subsequently genotyped using MassARRAY iPLEX⢠and TaqMan technologies to investigate association of these polymorphisms with nephropathy in individuals with type 1 diabetes. The top ranked nsSNP, rs1543547 (P = 10-5), is located in RAET1L, a major histocompatibility class I-related gene at 6q25.1. Of particular interest, multiple nsSNPs within the top ranked (0.2%) SNPs are within several plausible candidate genes for nephropathy on 3q21.3 and 6p21.3.