311 resultados para variational characterisation
Resumo:
Utilising cameras as a means to survey the surrounding environment is becoming increasingly popular in a number of different research areas and applications. Central to using camera sensors as input to a vision system, is the need to be able to manipulate and process the information captured in these images. One such application, is the use of cameras to monitor the quality of airport landing lighting at aerodromes where a camera is placed inside an aircraft and used to record images of the lighting pattern during the landing phase of a flight. The images are processed to determine a performance metric. This requires the development of custom software for the localisation and identification of luminaires within the image data. However, because of the necessity to keep airport operations functioning as efficiently as possible, it is difficult to collect enough image data to develop, test and validate any developed software. In this paper, we present a technique to model a virtual landing lighting pattern. A mathematical model is postulated which represents the glide path of the aircraft including random deviations from the expected path. A morphological method has been developed to localise and track the luminaires under different operating conditions. © 2011 IEEE.
Resumo:
3-amino-2-oxazolidinone (AOZ) is a tissue bound toxic metabolite derived from the nitrofuran antibiotic, furazolidone. AOZ is detected in the derivatised form of 3-{[(2-nitrophenyl) methylene]amino}-2-oxazolidinone (NP AOZ). 3-{[( 3- carboxyphenyl)-methylene]amino-2-oxazolidinone (CP AOZ) was used as the immunising hapten for the production of monoclonal antibodies against NP AOZ. Monoclonal antibodies were produced using hybridomas from the fusion of murine myeloma cells and spleen cells isolated from BALB/c mice immunised with CP AOZ-ethylenediamine-human serum albumin (CP AOZ-ed-HSA). The antibody production in ascitic fluids from clones 3B8/2B9 and 2D11/A4 was monitored during a 16 month period. Repeated cultures of these hybridomas, followed by injection into mice and cloning did not change the assay parameters. Clone 2D11/A4 exhibited long term stability in antibody production throughout the experiment whereas clone 3B8/2B9 demonstrated variability in particular antibody yields whilst retaining assay sensitivity. Reasons for this production variability in clones are discussed. In an optimised direct ELISA format, the antibodies exhibited a 50% binding inhibition in the range of 0.52-1.15 ng/ml with NP AOZ (0.22-0.50 ng/ml, respective AOZ equivalents) and showed high specificity towards this analyte. The sensitivity of monoclonal antibodies incorporated into the ELISA is compatible with the European Union MRLP and is currently in use for routine analysis.
Resumo:
A numerical and experimental investigation on the mode-I intralaminar toughness of a hybrid plain weave composite laminate manufactured using resin infusion under flexible tooling (RIFT) process is presented in this paper. The pre-cracked geometries consisted of overheight compact tension (OCT), double edge notch (DEN) and centrally cracked four-point-bending (4PBT) test specimens. The position as well as the strain field ahead of the crack tip during the loading stage was determined using a digital speckle photogrammetry system. The limitation on the applicability of the standard data reduction schemes for the determination of intralaminar toughness of composite materials is presented and discussed. A methodology based on the numerical evaluation of the strain energy release rate using the J-integral method is proposed to derive new geometric correction functions for the determination of the stress intensity factor for composites. The method accounts for material anisotropy and finite specimen dimension effects regardless of the geometry. The approach has been validated for alternative non-standard specimen geometries. A comparison between different methods currently available for computing the intralaminar fracture toughness in composite laminates is presented and a good agreement between numerical and experimental results using the proposed methodology was obtained.
Resumo:
Design and evaluation of a novel laser-based method for micromoulding of microneedle arrays from polymeric materials under ambient conditions. The aim of this study was to optimise polymeric composition and assess the performance of microneedle devices that possess different geometries.
Resumo:
The aim of this study was to isolate and identify marine-derived bacteria which exhibited high tolerance to, and an ability to biodegrade, 1-alkyl-3-methylimidazolium chloride ionic liquids. The salinity and hydrocarbon load of some marine environments may induce selective pressures which enhance the ability of microbes to grow in the presence of these liquid salts. The isolates obtained in this study generally showed a greater ability to grow in the presence of the selected ionic liquids compared to microorganisms described previously, with two marine-derived bacteria, Rhodococcus erythropolis and Brevibacterium sanguinis growing in concentrations exceeding 1 M 1-ethyl-3-methylimidazolium chloride. The ability of these bacteria to degrade the selected ionic liquids was assessed using High Performance Liquid Chromatography (HPLC), and three were shown to degrade the selected ionic liquids by up to 59% over a 63-day test period. These bacterial isolates represent excellent candidates for further potential applications in the bioremediation of ionic liquid-containing waste or following accidental environmental exposure.
Resumo:
Chiral thioureas and functionalised chiral thiouronium salts were synthesised starting from the relatively cheap and easily available chiral amines: (S)-methylbenzylamine and rosin-derived (+)-dehydroabietylamine. The introduction of a delocalised positive charge to the thiourea functionality, by an alkylation reaction at the sulfur atom, enables dynamic rotameric processes: hindered rotations about the delocalised CN and CS bonds. Hence, four different rotamers/isomers may be recognised: syn-syn, syn-anti, anti-syn and anti-anti. Extensive H-1 and C-13 NMR studies have shown that in hydrogen-bond acceptor solvents, such as perdeuteriated dimethyl sulfoxide, the syn-syn conformation is preferable. On the other hand, when using non-polar solvents, such as CDCl3, the mixture of syn-syn and syn-anti isomers is detectable, with an excess of the latter. Apart from this, in the case of S-butyl-N,N'-bis(dehydroabietyl)thiouronium ethanoate in CDCl3, the H-1 NMR spectrum revealed that strong bifurcated hydrogen bonding between the anion and the cation causes global rigidity without signs of hindered rotamerism observable on the NMR time scale. This suggested that these new salts might be used as NMR discriminating agents for chiral oxoanions, and are indeed more effective than their archetypal guanidinium analogues or the neutral thioureas. The best results in recognition of a model substrate, mandelate, were obtained with S-butyl-N,N'-bis(dehydroabietyl) thiouronium bistriflamide. It was confirmed that the chiral recognition occurred not only for carboxylates but also for sulfonates and phosphonates. Further H-1 NMR studies confirmed a 1 : 1 recognition mode between the chiral agent (host) and the substrate (guest); binding constants were determined by H-1 NMR titrations in solutions of DMSO-d(6) in CDCl3. It was also found that the anion of the thiouronium salt had a significant influence on the recognition process: anions with poor hydrogen-bond acceptor abilities led to the best discrimination. The presence of host-guest hydrogen bonding was confirmed in the X-ray crystal structure of S-butyl-N,N'-bis(dehydroabietyl)thiouronium bromide and by computational studies (density functional theory).