363 resultados para retinal images
Resumo:
Objective: Pharmacological profiling of store-operated Ca(2+) entry (SOCE) and molecular profiling of ORAI and TRPC expression in arterioles.
Methods: Fura-2 based microfluorimetry was used to assess CPA-induced SOCE in rat retinal arteriolar myocytes. Arteriolar ORAI and TRP transcript expression were screened using RT-PCR.
Results: SKF96365 and LOE908 blocked SOCE (IC(50) s of 1.2µM and 1.4µM, respectively). Gd(3+) and La(3+) potently inhibited SOCE (IC(50) s of 21nM and 42nM, respectively), but Ni(2+) showed lower potency (IC(50) = 11.6µM). 2-aminoethyldiphenyl borate (2APB) inhibited SOCE (IC(50) = 3.7µM) but enhanced basal influx (>100µM). Verapamil and nifedipine had no effect at concentrations that inhibit L-type Ca(2+) channels, but diltiazem inhibited SOCE by approximately 40% (=0.1µM). RT-PCR demonstrated transcript expression for ORAI 1, 2 and 3, and TRPC1, 3, 4 and 7. Transcripts for TRPV1 and 2, which are activated by 2APB, were also expressed.
Conclusion: The pharmacological profile of SOCE in retinal arteriolar smooth muscle appears unique when compared to other vascular tissues. This suggests that the molecular mechanisms underlying SOCE can differ, even in closely related tissues. Taken together, the pharmacological and molecular data are most consistent with involvement of TRPC1 in SOCE, although involvement of ORAI or other TRPC channels cannot be excluded. © 2012 John Wiley & Sons Ltd.
Resumo:
PURPOSE. This study was conducted to evaluate whether regions of the retinal neuropile become hypoxic during periods of high oxygen consumption and whether depletion of the outer retina reduces hypoxia and related changes in gene expression.
METHODS. Retinas from rhodopsin knockout (Rho(-/-)) mice were evaluated along with those of wild-type (WT) control animals. Retinas were also examined at the end of 12-hour dark or light periods, and a separate group was treated with L-cis-diltiazem at the beginning of a 12-hour dark period. Hypoxia was assessed by deposition of hypoxyprobe (HP) and HP-protein adducts were localized by immunohistochemistry and quantified using ELISA. Also, hypoxia-regulated gene expression and transcriptional activity were assessed alongside vascular density.
RESULTS. Hypoxia was observed in the inner nuclear and ganglion cell layers in WT retina and was significantly reduced in Rho (-/-) mice (P < 0.05). Retinal hypoxia was significantly increased during dark adaptation in WT mice (P < 0.05), whereas no change was observed in Rho(-/-) or with L-cis-diltiazem-treated WT mice. Hypoxia-inducible factor (HIF)-1 alpha DNA-binding and VEGF mRNA expression in Rho(-/-) retina was significantly reduced in unison with outer retinal depletion (P < 0.05). Retina from the Rho(-/-) mice displayed an extensive intraretinal vascular network after 6 months, although there was evidence that capillary density was depleted in comparison with that in WT retinas.
CONCLUSIONS. Relative hypoxia occurs in the inner retina especially during dark adaptation. Photoreceptor loss reduces retinal oxygen usage and hypoxia which corresponds with attenuation of the retinal microvasculature. These studies suggest that in normal physiological conditions and diurnal cycles the adult retina exists in a state of borderline hypoxia, making this tissue particularly susceptible to even subtle reductions in perfusion.
Resumo:
Performance at the Joinery, Dublin, at at Spatial Music Collective concert
Resumo:
Retinal vasoconstriction and reduced retinal blood flow precede the onset of diabetic retinopathy. The pathophysiological mechanisms that underlie increased retinal arteriolar tone during diabetes remain unclear. Normally, local Ca(2+) release events (Ca(2+)-sparks), trigger the activation of large-conductance Ca(2+)-activated K(+)(BK)-channels which hyperpolarize and relax vascular smooth muscle cells, thereby causing vasodilatation. In the present study, we examined BK channel function in retinal vascular smooth muscle cells from streptozotocin-induced diabetic rats. The BK channel inhibitor, Penitrem A, constricted nondiabetic retinal arterioles (pressurized to 70mmHg) by 28%. The BK current evoked by caffeine was dramatically reduced in retinal arterioles from diabetic animals even though caffeine-evoked [Ca(2+)](i) release was unaffected. Spontaneous BK currents were smaller in diabetic cells, but the amplitude of Ca(2+)-sparks was larger. The amplitudes of BK currents elicited by depolarizing voltage steps were similar in control and diabetic arterioles and mRNA expression of the pore-forming BKalpha subunit was unchanged. The Ca(2+)-sensitivity of single BK channels from diabetic retinal vascular smooth muscle cells was markedly reduced. The BKbeta1 subunit confers Ca(2+)-sensitivity to BK channel complexes and both transcript and protein levels for BKbeta1 were appreciably lower in diabetic retinal arterioles. The mean open times and the sensitivity of BK channels to tamoxifen were decreased in diabetic cells, consistent with a downregulation of BKbeta1 subunits. The potency of blockade by Pen A was lower for BK channels from diabetic animals. Thus, changes in the molecular composition of BK channels could account for retinal hypoperfusion in early diabetes, an idea having wider implications for the pathogenesis of diabetic hypertension.
Resumo:
Background and Purpose: Ca(2+) imaging reveals subcellular Ca(2+) sparks and global Ca(2+) waves/oscillations in vascular smooth muscle. It is well established that Ca(2+) sparks can relax arteries, but we have previously reported that sparks can summate to generate Ca(2+) waves/oscillations in unpressurized retinal arterioles, leading to constriction. We have extended these studies to test the functional significance of Ca(2+) sparks in the generation of myogenic tone in pressurized arterioles.
Experimental Approach: Isolated retinal arterioles (25-40 μm external diameter) were pressurized to 70 mmHg, leading to active constriction. Ca(2+) signals were imaged from arteriolar smooth muscle in the same vessels using Fluo4 and confocal laser microscopy.
Key Results: Tone development was associated with an increased frequency of Ca(2+) sparks and oscillations. Vasomotion was observed in 40% of arterioles and was associated with synchronization of Ca(2+) oscillations, quantifiable as an increased cross-correlation coefficient. Inhibition of Ca(2+) sparks with ryanodine, tetracaine, cyclopiazonic acid or nimodipine, or following removal of extracellular Ca(2+) , resulted in arteriolar relaxation. Cyclopiazonic acid-induced dilatation was associated with decreased Ca(2+) sparks and oscillations but with a sustained rise in the mean global cytoplasmic [Ca(2+) ] ([Ca(2+) ]c ), as measured using Fura2 and microfluorimetry.
Conclusions and Implications: This study provides direct evidence that Ca(2+) sparks can play an excitatory role in pressurized arterioles, promoting myogenic tone. This contrasts with the generally accepted model in which sparks promote relaxation of vascular smooth muscle. Changes in vessel tone in the presence of cyclopiazonic acid correlated more closely with changes in spark and oscillation frequency than global [Ca(2+) ]c , underlining the importance of frequency-modulated signalling in vascular smooth muscle.
Resumo:
We investigated the phenotype of cells involved in leukostasis in the early stages of streptozotocin-induced diabetes in mice by direct observation and by adoptive transfer of calcein-AM-labeled bone marrow-derived leukocytes from syngeneic mice. Retinal whole mounts, confocal microscopy, and flow cytometry ex vivo and scanning laser ophthalmoscopy in vivo were used. Leukostasis in vivo and ex vivo in retinal capillaries was increased after 2 weeks of diabetes (Hb A(1c), 14.2 ± 1.2) when either donor or recipient mice were diabetic. Maximum leukostasis occurred when both donor and recipient were diabetic. CD11b(+), but not Gr1(+), cells were preferentially entrapped in retinal vessels (fivefold increase compared with nondiabetic mice). In diabetic mice, circulating CD11b(+) cells expressed high levels of CCR5 (P = 0.04), whereas spleen (P = 0.0001) and retinal (P = 0.05) cells expressed increased levels of the fractalkine chemokine receptor. Rosuvastatin treatment prevented leukostasis when both recipient and donor were treated but not when donor mice only were treated. This effect was blocked by treatment with mevalonate. We conclude that leukostasis in early diabetic retinopathy involves activated CCR5(+)CD11b(+) myeloid cells (presumed monocytes). However, leukostasis also requires diabetes-induced changes in the endothelium, because statin therapy prevented leukostasis only when recipient mice were treated. The up-regulation of the HMG-CoA reductase pathway in the endothelium is the major metabolic dysregulation promoting leukostasis.
Resumo:
PURPOSE:
To investigate the role of the Fractalkine receptor CX3CR1 pathway in oxidative insults-mediated retinal degeneration and immune activation.
METHODS:
A prooxidant, paraquat (0.75 µM) was injected into the vitreous of C57BL/6J, CX3CR1(gpf/+), and CX3CR1(gfp/gfp) mice. Retinal lesions were investigated clinically by topic endoscopic fundus imaging and fluorescence angiography, and pathologically by light- and electron microscopy. Retinal immune gene expression was determined by real-time RT-PCR. Microglial activation and immune cell infiltration were examined by confocal microscopy of retinal flatmounts.
RESULTS:
Intravitreal injection of paraquat (0.75 µM) resulted in acute retinal capillary nonperfusion within 2 days, which improved from 4 days to 4 weeks postinjection (p.i.). Panretinal degeneration was observed at 4 days p.i. and progressed further at 4 weeks p.i. In the absence of CX3CR1, retinal degeneration was exaggerated and was accompanied by increased TNF-a, iNOS, IL-1ß, Ccl2, and Casp-1 gene expression. Confocal microscopy of retinal flatmounts revealed microglial activation and CD44(+)MHC-II(+) monocyte and GR1(+) neutrophil infiltration in paraquat-injected eyes. The number of activated microglia and infiltrating leukocytes was significantly higher in CX3CR1(gfp/gfp) mice than in CX3CR1(gfp/+) mice.
CONCLUSIONS:
Our results suggest that the CX3CR1 signaling pathway may play an important role in controlling retinal inflammation under oxidative and ischemia/reperfusion conditions. In the absence of CX3CR1, uncontrolled retinal inflammation results in exaggerated retinal degeneration.
Resumo:
Aim: To evaluate the distribution of fundus autofluorescence in patients with age-related macular degeneration and choroidal neovascularisation (CNV). Methods: Colour fundus photographs, fundus fluorescein angiograms (FFA) and fundus autofluorescence images were obtained from a group of 40 patients (43 eyes) with age-related macular degeneration and purely classic or occult CNV. Only patients with newly diagnosed CNV and in whom autofluorescence images were obtained within 2 weeks from FFA were included. The distribution of autofluorescence was qualitatively evaluated, and the findings compared with those from colour fundus photographs and FFA. Results: 29 (67%) eyes had classic CNV and 14 (33%) had occult CNV. In 26 (90%) eyes with classic CNV, a low autofluorescence signal was detected at the site of the CNV; in 7 (50%) eyes with occult CNV, multiple foci of low autofluorescence signal were detected. Outside the area affected by the lesion, homogeneous autofluorescence was observed in most of the cases (n = 33, 77%). Similarly, homogeneous autofluorescence was commonly observed in fellow eyes (62%). A pattern of focal increased autofluorescence was rarely seen in eyes with CNV (n = 4, 9%) or in fellow eyes (n = 4, 15%). In 11 of 43 (25%) eyes, areas of increased autofluorescence, other than a pattern of focal increased autofluorescence, were detected. In four patients, autofluorescence images had been obtained before the development of CNV; in none was any increased autofluorescence detected before the formation of CNV. Conclusions: Distinct patterns of autofluorescence were observed in eyes with pure classic and occult CNV. Increased autofluorescence was rarely seen in eyes with CNV and in fellow eyes, suggesting that increased autofluorescence, and thus, retinal pigment epithelium lipofuscin, may not play an essential part in the formation of CNV.
Resumo:
We investigated and characterized the effect of externally applied electric fields (EF) on retinal pigment epithelial (RPE) cells by exposing primary cultures of human RPE cells (hRPE) and those from the ARPE19 immortalized cell line to various strengths of EF (EF-treated cells) or to no EF (control cells) under different conditions including presence or absence of serum and gelatin and following wounding. We evaluated changes in RPE cell behavior in response to EF by using a computer based image capture and analysis system (Metamorph). We found that RPE cells responded to externally applied EFs by preferential orientation perpendicular to the EF vector, directed migration towards the anode, and faster translocation rate than control, untreated cells. These responses were voltage-dependent. Responses were observed even at low voltages, of 50-300 mV. Furthermore, the migration of hRPE cell sheets generated by wounding of confluent monolayers of cells at early and late confluence could be manipulated by the application of EF, with directed migration towards the anode observed at both sides of the wounded hRPE. In conclusion, RPE cell behaviour can be controlled by an externally applied EF. The potential for externally applied EF to be used as a therapeutic strategy in the management of selected retinal diseases warrants further investigation. © 2010 Elsevier Ltd.
Resumo:
To determine the incidence of giant retinal tear (GRT) in the United Kingdom and to provide epidemiologic data, clinical characteristics, treatment methods, and short-term outcomes in affected and fellow eyes. METHODS. Patients with a newly developed GRT (90° or greater in circumferential extent associated with posterior vitreous detachment) were identified prospectively over a 13-month period (January 2007-January 2008, inclusive) by active surveillance through the British Ophthalmic Surveillance Unit. Questionnaire-based data were obtained from reporting ophthalmologists at baseline and 12 months. RESULTS. Sixty patients (62 eyes) developed a new GRT, giving a U.K. annual incidence of 0.094 (95% CI 0.072-0.120) cases or 0.091 (95% CI 0.069-0.117) patients per 100,000. The GRTs were mostly idiopathic (54.8%), affected middle-aged (mean, 42.2 years), white British (93.3%) males (71.7%), with presenting vision worse than 20/40 in 59.7%, foveal detachment in 45.2%, and proliferative vitreoretinopathy of grade C (PVR-C) or worse in 11.3%. Treatment in most was managed by pars plana vitrectomy (93.5%) with laser retinopexy (52.5%) and silicone oil endotamponade (75.8%). Prophylactic 360° laser or cryotherapy was applied to 39.0% of the fellow eyes. At mean follow-up of 11.3 months, eventual retinal reattachment was attained in 94.7%, although only 42.1% achieved vision of =20/40. Neither GRT nor RD developed in any of the 19 nontraumatic, noniatrogenic, prophylactically treated fellow eyes. CONCLUSIONS. This study is the first population-based prospective effort to evaluate the epidemiology of GRT. Although onlya minority presented with PVR-C and high retinal reattachment rates were achieved, fewer than half had vision sufficient for driving in the GRT eye.
Resumo:
Background: A giant retinal tear is a full-thickness retinal break that extends circumferentially around the retina for 90 degrees ormore in the presence of a posteriorly detached vitreous. It causes significant visual morbidity from retinal detachment and proliferative vitreoretinopathy. The fellow eye of patients who have had a spontaneous giant retinal tear has an increased risk of developing a giant retinal tear, a retinal detachment or both. Interventions such as 360-degree encircling scleral buckling, 360-degree cryotherapy and 360-degree laser photocoagulation have been advocated by some ophthalmologists as prophylaxis for the fellow eye against the development of a giant retinal tear and/or a retinal detachment, or to prevent its extension. Objectives: To evaluate the effectiveness of prophylactic 360-degree interventions in the fellow eye of patients with unilateral giant retinal tear to prevent the occurrence of a giant retinal tear and/or a retinal detachment. Search strategy: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2008, Issue 4), MEDLINE (January 1950 to December 2008), EMBASE (January 1980 to December 2008) and Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to December 2008). In addition, we searched the proceedings of the Annual Meeting of the Association for Research in Vision and Ophthalmology (ARVO) up to 2008 for information about other relevant studies. There were no language or date restrictions in the search for trials. The electronic databases were last searched on 15 December 2008. Selection criteria: Prospective randomised controlled trials (RCTs) comparing one prophylactic treatment for fellow eyes of patients with giant retinal tear against observation (no treatment) or another form of prophylactic treatment. In the absence of RCTs, we planned to discuss case-control studies that met the inclusion criteria but we would not conduct a meta-analysis using these studies. Data collection and analysis: We did not find any studies that met the inclusion criteria for the review and therefore no assessment of methodological quality or meta-analysis could be performed. Main results: No studies met the inclusion criteria for this review. Authors' conclusions: No strong evidence in the literature was found to support or refute prophylactic 360-degree treatments to prevent a giant retinal tear or a retinal detachment in the fellow eye of patients with unilateral giant retinal tears. Copyright © 2009 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.