331 resultados para ionic liquid
Resumo:
A range of chloroindate(III) ionic liquid systems was prepared by mixing of 1-alkyl-3-methylimidazolium chloride with indium(III) chloride in various ratios, expressed as the mol fraction of indium(III) chloride, chi(InCl3). For chi(InCl3) 0.50, the products were biphasic (suspensions of a solid in an ionic liquid). Speciation of these chloroindate(III) systems was carried out using a wide range of techniques: differential scanning calorimetry (DSC), polarised optical microscopy (POM), liquid-state and solid-state In-115 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS). Ionic liquids prepared using an excess of the organic chloride (chi(InCl3) 0.5) contained indium(III) chloride powder suspended in a neutral tetrachloroindate ionic liquid.
Resumo:
The presence of local anisotropy in the bulk, isotropic, and ionic liquid phases-leading to local mesoscopic inhomogeneity-with nanoscale segregation and expanding nonpolar domains on increasing the length of the cation alkyl-substituents has been proposed on the basis of molecular dynamics (MD) simulations. However, there has been little conclusive experimental evidence for the existence of intermediate mesoscopic structure between the first/second shell correlations shown by neutron scattering on short chain length based materials and the mesophase structure of the long chain length ionic liquid crystals. Herein, small angle neutron scattering measurements have been performed on selectively H/D-isotopically substituted 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids with butyl, hexyl, and octyl substituents. The data show the unambiguous existence of a diffraction peak in the low-Q region for all three liquids which moves to longer distances (lower Q), sharpens, and increases in intensity with increasing length of the alkyl substituent. It is notable, however, that this peak occurs at lower values of Q (longer length scale) than predicted in any of the previously published MD simulations of ionic liquids, and that the magnitude of the scattering from this peak is comparable with that from the remainder of the amorphous ionic liquid. This strongly suggests that the peak arises from the second coordination shells of the ions along the vector of alkyl-chain substituents as a consequence of increasing the anisotropy of the cation, and that there is little or no long-range correlated nanostructure in these ionic liquids.
Resumo:
The interfacial tension of the liquid-liquid phase boundary of several 1,3-dialkyl imidazolium based ionic liquids, namely, 1,3-dimethylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(1)mim][NTf2], 1-ethyl-3-methylimidazoliurn bis{(trifluoromethyl)sulfonyl}imide [C(2)mim][NTf2], 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(4)mim][NTf2], 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(6)mim][NTf2], 1-octyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide [C(8)mim][NTf2], 1-butyl-3-methylimidazolium trifluoromethylsulfonate [C(4)mim][CF3SO3], and 1-butyl-3-methylimidazolium trifluoroacetate [C(4)mim][CF3COO] with water and with the n-alkanes, n-hexane, n-octane and n-decane, has been measured using the pendant drop method as a function of temperature from 293 to 323 K. The experimental interfacial tension data were correlated using the ionic liquid parachor estimation method and a mutual solubility model. The influence of the cation and anion of ionic liquids and also of alkyl chain length of n-alkanes on interfacial tension is discussed. It has also been demonstrated that the interfacial tension data estimated by the correlation methods are in good agreement with the experimental data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium his (trifluoromethanesulfonyl) imide [N-6.2.2.2][N(Tf)(2)], 1-butyl-3-methylimidazolium hexafluorosphosphate [C(4)mim] [PF6], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C(4)mpyrr][N(Tf)(2)], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C-4mim][N(TF)(2)], N-butyl-N-methyl-pyrrolidinium dicyanamide [C(4)mpyrr][N(NC)(2)] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P-14,P-6,(6,6)][FAP] on a platinum microelectrode. In [N-6,N-2,N-2,N-2][NTf2] and [P-14,P-6,P-6.6][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion. which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P-14,P-6,P-6.6[FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N-6,N-2,N-2,N-2],[NTF2] and [P-14,P-6,P-6.6][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer is followed by a chemical reaction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Acid catalysed direct hydration of dihydromyrcene to dihydromyrcenol proceeds selectively in ionic liquid media. By making use of the tuneable physicochemical properties of ionic liquids, and depending upon the process requirement, either biphasic or triphasic systems can be developed. The selectivity to dihydromyrcenol remains extremely high over a wide range of reaction conditions.
Resumo:
Computer simulations of (i) a [C(12)mim][Tf2N] film of nanometric thickness squeezed at kbar pressure by a piecewise parabolic confining potential reveal a mesoscopic in-plane density and composition modulation reminiscent of mesophases seen in 3D samples of the same room-temperature ionic liquid (RTIL). Near 2D confinement, enforced by a high normal load, as well as relatively long aliphatic chains are strictly required for the mesophase formation, as confirmed by computations for two related systems made of (ii) the same [C(12)mim][Tf2N] adsorbed at a neutral solid surface and (iii) a shorter-chain RTIL ([C(4)mim][Tf2N]) trapped in the potential well of part i. No in-plane modulation is seen for ii and iii. In case ii, the optimal arrangement of charge and neutral tails is achieved by layering parallel to the surface, while, in case iii, weaker dispersion and packing interactions are unable to bring aliphatic tails together into mesoscopic islands, against overwhelming entropy and Coulomb forces. The onset of in-plane mesophases could greatly affect the properties of long-chain RTILs used as lubricants.
Resumo:
Contamination of medical devices with bacteria such as Meticillin resistant Staphylococcus aureus (MRSA) is of great clinical concern. Poly(vinyl chloride) is widely used in the production of medical devices, such as catheters. The flexibility of catheter tubing is derived from the addition of plasticisers. Here, we report the design of two dual functional ionic liquids, 1-ethylpyridinium docusate and tributyl(2-hydroxyethyl)phosphonium docusate, which uniquely provide a plasticising effect, and exhibit antimicrobial and antibiofilm-forming activity to a range of antibiotic resistant bacteria. The plasticisation of poly(vinyl chloride) was tailored as a function of ionic liquid concentration. The effective antimicrobial behaviour of both ionic liquids originates from the chemical structure of the anion or cation and is not limited to the length of the alkyl chain on the anion/cation. The design approach adopted will be useful in developing ionic liquids as multi-functional additives for polymers.
Resumo:
Ionic liquids have been used in combination with ball milling on a range of chlorophosphoramidite reagents to phosphitylate nucleosides and 2-deoxynucleosides. The enhanced stability offered by the ionic liquid mediated processes combined with efficient mass transfer induced by ball milling has enabled excellent yields to be obtained even when using small dialkyl amino groups as well as the more commonly used diisopropylamino protection.
Resumo:
We present a study on the effect of the alkyl chain length of the imidazolium ring in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, [C1CnIm][NTf2] (n = 2 to 10), on the mixing properties of (ionic liquid + alcohol) mixtures (enthalpy and volume). We have measured small excess molar volumes with highly asymmetric curves as a function of mole fraction composition (S-shape) with more negative values in the alcohol-rich regions. The excess molar volumes increase with the increase of the alkyl-chain length of the imidazolium cation of the ionic liquid. The values of the partial molar excess enthalpy and the enthalpy of mixing are positive and, for the case of methanol, do not vary monotonously with the length of the alkyl side-chain of the cation on the ionic liquid – increasing from n = 2 to 6 and then decreasing from n = 8. This non-monotonous variation is explained by a more favourable interaction of methanol with the cation head group of the ionic liquid for alkyl chains longer than eight carbon atoms. It is also observed that the mixing is less favourable for the smaller alcohols, the enthalpy of mixing decreasing to less positive values as the alkyl chain of the alcohol increases. Based on the data from this work and on the knowledge of the vapour pressure of {[C1CnIm][NTf2] + alcohol} binary mixtures at T = 298 K reported in the literature, the excess Gibbs free energy, excess enthalpy and excess entropy could be then calculated and it was observed that these mixtures behave like the ones constituted by a non-associating and a non-polar component, with its solution behaviour being determined by the enthalpy.
Resumo:
A series of bis(oxazoline) metal(II) complexes has been supported on silica and carbon supports by non-covalent immobilisation using an ionic liquid. The catalytic performance of these solids was compared for the enantioselective Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene and the Mukaiyama-aldol reaction between methyl pyruvate and 1-methoxy-1-trimethylsilyloxy-propene. In both reactions the enantioselectivity was strongly influenced by the choice of support displaying enantioselectivies (ee values) up to 40% higher than those conducted under homogeneous reaction conditions.
Resumo:
The ionic liquid 1-ethyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide ([C(2)mim][NTf2]) was tested as solvent for the separation of aromatic and aliphatic hydrocarbons containing 7 or 8 carbon atoms (the C-7- and C-8-fractions). The liquid-liquid equilibria (LLE) of the ternary systems (heptane + toluene + [C(2)mim][NTf2]) and (octane + ethylbenzene + [C(2)mim][NTf2]), at 25 degrees C, were experimentally determined. The performance of the ionic liquid as the solvent in such systems was evaluated by means of the calculation of the solute distribution ratio and the selectivity. The results were compared to those previously reported for the extraction of benzene from its mixtures with hexane by using the same ionic liquid, therefore analysing the influence of the size of the hydrocarbons. It was found that the ionic liquid is also good for the extraction of C-7- and C-8- fraction aromatic compounds, just a greater amount of ionic liquid being needed to perform an equivalently efficient separation than for the C-6-fraction. It is also discussed how [C(2)mim][NTf2] performs comparably better than the conventional solvent sulfolane. The original 'Non-Random Two-Liquid' (NRTL) equation was used to adequately correlate the experimental LLE data.
Resumo:
We describe a fluidity and conductivity study as a function of composition in N-methylpyrrolidine-acetic acid mixtures. The simple 1 : 1 acid-base mixture appears to form an ionic liquid, but its degree of ionicity is quite low and such liquids are better thought of as poorly dissociated mixtures of acid and base. The composition consisting of 3 moles acetic acid and 1 mole N-methylpyrrolidine is shown to form the highest ionicity mixture in this binary due to the presence of oligomeric anionic species [(AcO)(x)Hx-1](-) stabilised by hydrogen bonds. These oligomeric species, being weaker bases than the acetate anion, shift the proton transfer equilibrium towards formation of ionic species, thus generating a higher degree of ionicity than is present at the 1 : 1 composition. A Walden plot analysis, thermogravimetric behaviour and proton NMR data, as well as ab initio calculations of the oligomeric species, all support this conclusion.
Resumo:
A novel class of anionic surfactants was prepared through the neutralization of pyrrolidine or imidazole by alkylcarboxylic acids. The compounds, namely the pyrrolidinium alkylcarboxylates ([Pyrr][CnH2n+1COO]) and imidazolium alkylcarboxylates ([Im][CnH2n+1COO]), were obtained as ionic liquids at room temperature. Their aggregation behavior has been examined as a function of the alkyl chain length (from n = 5 to 8) by surface tensiometry and conductivity. Decreases in the critical micelle concentration (cmc) were obtained, for both studied PIL families, when increasing the anionic alkyl chain length (n). Surprisingly, a large effect of the alkyl chain length was observed on the minimum surface area per surfactant molecule (Amin) and, hence the maximum surface excess concentration (Gmax) when the counterion was the pyrrolidinium cation. This unusual comportment has been interpreted in term of a balance between van der Waals and coulombic interactions. Conductimetric measurements permit determination of the degree of ionization of the micelle (a) and the molar conductivity (?M) of these surfactants as a function of n. The molar conductivities at infinite dilution in water (?8) of the [Pyrr]+ and [Im]+ cations have been then determined by using the classical Kohlraush equation. Observed change in the physicochemical, surface, and micellar properties of these new protonic ionic liquid surfactants can be linked to the nature of the cation. By comparison with classical anionic surfactants having inorganic counterions, pyrrolidinium alkylcarboxylates and imidazolium alkylcarboxylates exhibit a higher ability to aggregate in aqueous solution, demonstrating their potential applicability as surfactant.
Resumo:
The electrochemistry of elemental sulfur (S-8) and the polysulfides Na2S4 and Na2S6 has been studied for the first time in nonchloroaluminate ionic liquids. The cyclic voltammetry of S-8 in the ionic liquids is different to the behavior reported in some organic solvents, with two reductions and one oxidation peak observed. Supported by in situ UV-vis spectro-electrochemical experiments, the main reduction products of S-8 in [C(4)mim][DCA] ([C(4)mim] = 1-butyl-3-methylimidazolium; DCA = dicyanamide) have been identified as s(6)(2-) and S-4(2-), and plausible pathways for the formation of these species are proposed. Dissociation and/or disproportionation of the polyanions S-6(2-) and S-4(2-) appears to be slow in the ionic liquid, with only small amounts of the blue radical species S3(center dot-) formed in the solutions at r.t., in contrast with that observed in most molecular solvents.
Resumo:
Experimental data are presented for liquid-liquid equilibria of mixtures of the room-temperature ionic liquid 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([C2MIM][NTf2]) with the three alcohols propan-1-ol, butan-1-ol, and pentan-1-ol and for the 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl) imide ([C4MIM][NTf2]) with cyclohexanol and 1,2-hexanediol in the temperature range of 275 K to 345 K at ambient pressure. The synthetic method has been used. Cloud points at a given composition were observed by varying the temperature and using light scattering to detect the phase splitting. In addition, the influence of small amounts of water on the demixing temperatures of binary mixtures of [C2MIM][NTf2] and propan-1-ol, butan-1-ol, and pentan-1-ol was investigated.