218 resultados para Sub-seafloor Microbes
Resumo:
Application of intermedin/adrenomedullin-2 (IMD/AM-2) protects cultured human cardiac vascular cells and fibroblasts from oxidative stress and simulated ischaemia-reoxygenation injury (I-R), predominantly via adrenomedullin AM1 receptor involvement; similar protection had not been investigated previously in human cardiomyocytes (HCM). Expression of IMD, AM and their receptor components was studied in HCM. Receptor subtype involvement in protection by exogenous IMD against injury by simulated I-R was investigated using receptor component-specific siRNAs. Direct protection by endogenous IMD against HCM injury, both as an autocrine factor produced in HCM themselves and as a paracrine factor released from HCMEC co-cultured with HCM, was investigated using peptide-specific siRNA for IMD. IMD, AM and their receptor components (CLR, RAMPs1-3) were expressed in HCM. IMD 1 nmol L−1, applied either throughout ischaemia (3 h) and re-oxygenation (1 h) or during re-oxygenation (1 h) alone, attenuated HCM injury (P < 0.05); cell viabilities were 59% and 61% respectively vs. 39% in absence of IMD. Cytoskeletal disruption, protein carbonyl formation and caspase activity followed similar patterns. Pre-treatment (4 days) of HCM with CLR and RAMP2 siRNAs attenuated (P < 0.05) protection by exogenous IMD. Pre-treatment of HCMEC with IMD (and AM) siRNA augmented (P < 0.05) I-R injury: cell viabilities were 22% (and 32%) vs. 39% untreated HCMEC. Pre-treatment of HCM with IMD (and AM) siRNA did not augment HCM injury: cell viabilities were 37% (and 39%) vs. 39% untreated HCM. Co-culture with HCMEC conferred protection from injury on HCM; such protection was attenuated when HCMEC were pre-treated with IMD (but not AM) siRNA before co-culture. Although IMD is present in HCM, IMD derived from HCMEC and acting in a paracrine manner, predominantly via AM1 receptors, makes a marked contribution to cardiomyocyte protection by the endogenous peptide against acute I-R injury.
Resumo:
Seafloor massive sulfides (SMS) contain commercially viable quantities of high grade ores, making them attractive prospect sites for marine mining. SMS deposits may also contain hydrothermal vent ecosystems populated by high conservation value vent-endemic species. Responsible environmental management of these resources is best achieved by the adoption of a precautionary approach. Part of this precautionary approach involves the Environmental Impact Assessment (EIA) of exploration and exploitative activities at SMS deposits. The VentBase 2012 workshop provided a forum for stakeholders and scientists to discuss issues surrounding SMS exploration and exploitation. This forum recognised the requirement for a primer which would relate concepts underpinning EIA at SMS deposits. The purpose of this primer is to inform policy makers about EIA at SMS deposits in order to aid management decisions. The primer offers a basic introduction to SMS deposits and their associated ecology, and the basic requirements for EIA at SMS deposits; including initial data and information scoping, environmental survey, and ecological risk assessment. © 2013 Elsevier Ltd.
Resumo:
Strategies for mitigation of seafloor massive sulphide (SMS) extraction in the deep sea include establishment of suitable reference sites that allow for studies of natural environmental variability and that can serve as sources of larvae for re-colonisation of extracted hydrothermal fields. In this study, we characterize deep-sea vent communities in Manus Basin (Bismarck Sea, Papua New Guinea) and use macrofaunal data sets from a proposed reference site (South Su) and a proposed mine site (Solwara 1) to test the hypothesis that there was no difference in macrofaunal community structure between the sites. We used dispersion weighting to adjust taxa-abundance matrices to down-weight the contribution of contagious distributions of numerically abundant taxa. Faunal assemblages of 3 habitat types defined by biogenic taxa (2 provannid snails, Alviniconcha spp. and Ifremeria nautilei; and a sessile barnacle, Eochionelasmus ohtai) were distinct from one another and from the vent peripheral assemblage, but were not differentiable from mound-to-mound within a site or between sites. Mussel and tubeworm populations at South Su but not at Solwara 1 enhance the taxonomic and habitat diversity of the proposed reference site. © Inter-Research 2012.
Resumo:
Seafloor massive sulfide (SMS) mining will likely occur at hydrothermal systems in the near future. Alongside their mineral wealth, SMS deposits also have considerable biological value. Active SMS deposits host endemic hydrothermal vent communities, whilst inactive deposits support communities of deep water corals and other suspension feeders. Mining activities are expected to remove all large organisms and suitable habitat in the immediate area, making vent endemic organisms particularly at risk from habitat loss and localised extinction. As part of environmental management strategies designed to mitigate the effects of mining, areas of seabed need to be protected to preserve biodiversity that is lost at the mine site and to preserve communities that support connectivity among populations of vent animals in the surrounding region. These "set-aside" areas need to be biologically similar to the mine site and be suitably connected, mostly by transport of larvae, to neighbouring sites to ensure exchange of genetic material among remaining populations. Establishing suitable set-asides can be a formidable task for environmental managers, however the application of genetic approaches can aid set-aside identification, suitability assessment and monitoring. There are many genetic tools available, including analysis of mitochondrial DNA (mtDNA) sequences (e.g. COI or other suitable mtDNA genes) and appropriate nuclear DNA markers (e.g. microsatellites, single nucleotide polymorphisms), environmental DNA (eDNA) techniques and microbial metagenomics. When used in concert with traditional biological survey techniques, these tools can help to identify species, assess the genetic connectivity among populations and assess the diversity of communities. How these techniques can be applied to set-aside decision making is discussed and recommendations are made for the genetic characteristics of set-aside sites. A checklist for environmental regulators forms a guide to aid decision making on the suitability of set-aside design and assessment using genetic tools. This non-technical primer document represents the views of participants in the VentBase 2014 workshop.
Resumo:
Community coalescence is a recently introduced term describing the interaction of entire communities and their environments. We here explicitly place the concept of community coalescence in a soil microbial context, exploring intrinsic and extrinsic drivers of such coalescence events. Examples of intrinsic events include the action of earthworms and the dynamics of soil aggregates, while extrinsic events are exemplified by tillage, flooding, litter-fall, outplanting, and the addition of materials containing microbial communities. Aspects of global change may alter the frequency or severity of coalescence events. We highlight functional consequences of community coalescence in soil, and suggest ways to experimentally tackle this phenomenon. Soil ecology as a whole stands to benefit from conceptualizing soil biodiversity in terms of dynamic coalescent microbial assemblages.
Control of ionization and dissociation of H2+ by elliptically polarized ultra-short VUV laser pulses
Resumo:
Resonance-enhanced multiphoton ionization of H2 + exposed to elliptically polarized VUV laser pulses is investigated. Differential cross sections for nuclei and electron are obtained using numerical solutions of the time-dependent Schrödinger equation. In this work in progress, we explore the dependence of the dissociative ionization observables with the polarization of the light.
Resumo:
Breast cancer is a heterogeneous disease, at both an inter- and intra-tumoural level. Appreciating heterogeneity through the application of biomarkers and molecular signatures adds complexity to tumour taxonomy but is key to personalising diagnosis, treatment and prognosis. The extent to which heterogeneity exists, and its interpretation remains a challenge to pathologists. Using HER2 as an exemplar, we have developed a simple reproducible heterogeneity index. Cell-to-cell HER2 heterogeneity was extensive in a proportion of both reported 'amplified' and 'non-amplified' cases. The highest levels of heterogeneity objectively identified occurred in borderline categories and higher ratio non-amplified cases. A case with particularly striking heterogeneity was analysed further with an array of biomarkers in order to assign a molecular diagnosis. Broad biological complexity was evident. In essence, interpretation, depending on the area of tumour sampled, could have been one of three distinct phenotypes, each of which would infer different therapeutic interventions. Therefore, we recommend that heterogeneity is assessed and taken into account when determining treatment options.