299 resultados para Pontano, Giovanni Gioviano, 1426-1503.


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methane activation via bromination can be a feasible route with selective synthesis of mono-bromomethane. It is known that the condensation of brominated products into higher hydrocarbons can result in coking and deactivation in the presence of di-bromomethane. In this study, selective production of methyl bromide was investigated over sulfated ZrO2 included SBA-15 structures. It was observed that the higher the ZrO2 amounts the higher the conversion, while the catalyst remained >99% selective for the monobrominated methane. Over 25 mol.% ZrO2 included SBA-15 catalyst with a BET surface area of 246 m(2)/g, methane was brominated with 69% conversion at 340 degrees C and only CH3Br was selectively produced. (C) 2009 Elsevier B.V. All rights reserved

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single oxides of Ti and Zr incorporated SBA-15 were prepared and characterized by N-2 adsorption, NMR, and XPS techniques. Si-29 MAS NMR results suggest the formation of Si-O-X linkages (X: Ti or Zr) by an increase in the ratio of Q(3)/Q(4) in the presence of Ti or Zr. XPS analysis of Ti-SBA-15 catalysts indicate the presence of Ti-O-Si bonds in addition to Ti-O-Ti and Si-O-Si bonds, supporting the NMR evidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to prepare high surface area highly acidic catalysts, different weight loadings of ZrO2 were incorporated in the SBA-15 structures which are subsequently sulfated by treating in 0.25 M H2SO4. The catalysts were characterized by means of TEM, XRD, N-2 adsorption, and H-1 MAS NMR. Bronsted type acidities of sulfated zirconia included SBA-15 materials were identified by a sharp H-1 MAS NMR line at 10.6 ppm. The highest acidity was obtained in the 25 mol% ZrO2 included SBA-15 catalyst with a BET surface area of 246 m(2)/g.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activation of methane with a halogen followed by the metathesis of methyl halide is a novel route from methane to higher hydrocarbons or oxygenates. Thermodynamic analysis revealed that bromine is the most suitable halogen for this goal. Analysis of the published data on the reaction kinetics in a CSTR enabled us to judge on the effects of temperature, reactor residence time and the feed concentrations of bromine and methane to the conversion of methane and the selectivity towards mono or dibromomethane. The analysis indicated that high dibromomethane selectivity is attainable (over 90%) accompanied by high methane conversions. The metathesis of dibromomethane can provide an alternative route to the conversion of methane (natural gas) economically with smaller installations than the current syn-gas route. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The selective hydrogenation of ,-unsaturated aldehydes and ketones has been studied using ketoisophorone and cinnamaldehyde as model substrates using manganese oxide octahedral molecular sieve (OMS-2) based catalysts. For the first time, OMS-2 has been shown to be an efficient and selective hydrogenation catalyst. High selectivities for either the CC or CO double bond at approximate to 100% conversion were achieved by using OMS-2 and platinum supported on OMS-2 catalysts. Density functional theory (DFT) calculations showed that the dissociation of H2 on OMS-2 was water assisted and occurred on the surface Mn of OMS-2(001) that had been modified by an adsorbed H2O molecule. The theoretically calculated activation barrier was in good agreement with the experimentally determined value for the hydrogenation reactions, indicating that H2 dissociation on OMS-2 is likely to be the rate-determining step. A significant increase in the rate of reaction was observed in the presence of Pt as a result of the enhancement of H2 dissociative adsorption and subsequent reaction on the Pt or spillover of the hydrogen to the OMS-2 support. The relative adsorption strengths of ketoisophorone and cinnamaldehyde on the OMS-2 support compared with the Pt were found to determine the product selectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of iron containing zeolites with varying Si/Al ratios (11.5-140) and low iron content (similar to 0.9 wt.% Fe) have been synthesised by solid-state ion exchange with commercially available zeolites and tested, for the first time, in the oxidative dehydrogenation of propane (ODHP) with N2O. The samples were characterised by XRD, N-2-Adsorption, NH3-TPD and DR-UV-vis spectroscopy. The acidity of the Fe-ZSM-5 can be controlled by high temperature and steam treatments and Si/Al ratio. The selectivity and yield of propene were found to be the highest over Fe-ZSM-5 with low Al contents and reduced acidity. The initial propene yield over Fe-ZSM-5 was significantly higher than that of Fe-SiO2 since the presence of weak and/or medium acid sites together with oligonuclear iron species and iron oxides on the ZSM-5 are found to enhance the N2O activation. The coking of Fe-ZSM-5 catalysts could also be controlled by reduction of the surface acidity of ZSM-5 and by the use of O-2 in addition to N2O as the oxidant. Fe-ZSM-5 zeolites prepared with solid-state method have been shown to have comparable activity and better stability towards coking compared with Fe-ZSM-5 zeolites prepared by liquid ion exchange and hydrothermal synthesis methods. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chiral supported ionic liquid phase (CSILP) catalysts were prepared by physical adsorption (within highly porous carbons or mesoporous silica) of Ir, Ru and Rh complexes as IrCl(COD)-(S, S)-BDPP, [IrCl-(S)-BINAP](2), RuCl(p-cymene)[(S, S)-Ts-DPEN], RuOTf(p-cymene)[(S, S)-Ts-DPEN], [Rh(COD)(S, S)-DIPAMP][BF4], and [Rh(COD)(R, R)-Me-DuPHOS][BF4]. For the syntheses of CSILP catalysts [EMIM][NTf2], [BMIM][BF4] and [BMIM][PF6] ionic liquids were used. Comparative homogeneous and heterogeneous experiments were carried out using the asymmetric hydrogenation of double -C N- and -C C- bonds in trimethylindolenine, 2-methylquinoline and dimethylitaconate, respectively. The conversion and enantioselectivity was found to depend on the nature of the complex (metal and ligand), the immobilization method used, nature of the ionic liquid, nature of the support and the experimental conditions. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activity and selectivity are both important issues in heterogeneous catalysis and recent experimental results have shown that Ni catalysts doped by gold exhibit high activity for the hydrogenation of acetylene with good selectivity of ethylene formation. To unravel the underlying mechanism for this observation, the general trend of activity and selectivity of Ni surfaces doped by Au, Ag, and Cu has been investigated using density functional theory calculations. Complete energy profiles from C2H2 to C2H4 on Ni(111), Au/Ni(111), Ag/Ni(111) and Cu/Ni(111) are obtained and their turnover frequencies (TOFs) are computed. The results show that acetylene adsorption on Ni catalyst is strong which leads to the low activity while the doping of Au, Ag, and Cu on the Ni catalyst weakens the acetylene adsorption, giving rise to the increase of activity. The selectivity of ethylene formation is also quantified by using the energy difference between the hydrogenation barriers and the absolute value of the adsorption energies of ethylene. It is found that the selectivity of ethylene formation increases by doping Au and Ag, while those of Cu/Ni and Ni are similar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrode potentials for the two one electron oxidations of 1,2-diferrocenylethylene (bisferrocene, BF) were studied relative to that of the one electrode oxidation of decamethylferrocene in a variety of RTILs. The difference in these potentials was found to be very sensitive to the anion component of the ionic liquid showing the scope of these solutes as 'designer media' to tune the thermodynamic properties of solutes dissolved in them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although many gold heterogeneous catalysts have been shown to exhibit significant activity and high selectivity for a wide range of reactions in both the liquid and gas phases, they are prone to irreversible deactivation. This is often associated with sintering or loss of the interaction of the gold with the support. Herein, we report on the use of methyl iodide as a method of dispersing gold nanoparticles supported on silica, titania, and alumina supports. In the case of titania- and alumina-based catalysts, the gold was transformed from nanometer particles into small clusters and some atomically dispersed gold. In contrast, although there was a drop in the gold particle size on the silica support following CH3I treatment, the size remained in the submicrometer range. The structural changes were correlated with changes in the selectivity and activity for ethanol dehydration and benzyl alcohol oxidation. From these observations, it is clear that this treatment provides a method by which deactivated gold catalysts can be reactivated via redispersion of the gold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hierarchical SSZ-13 zeolites were synthesized by combining N,N,N-trimethyl-1-adamantanammonium hydroxide (TMAdOH) as the structure-directing agent for chabazite formation with mono- and diquaternary ammonium-type and organosilane mesoporogens and extensively characterized for their structural, textural, and catalytic properties. Mesoporous SSZ-13 zeolites can be synthesized in one step by combining TMAdOH and the diquaternary ammonium-type surfactant C22-4-4Br2. The mesopore volume increases with the mesoporogen/SDA ratio. The hierarchical zeolites are highly crystalline and exhibit similar Brønsted acidity as SSZ-13. Hierarchical SSZ-13 zeolites display increased lifetime in packed-bed MTO experiments than conventional SSZ-13 at similar light olefins yield. The increased lifetime is due to better utilization of the micropore space. With increasing mesoporosity, the micropore space is used more efficiently, but also the rate of coke formation at the crystal periphery increases. Accordingly, the most stable zeolite is obtained at a relatively low C22-4-4Br2/SDA ratio. These zeolite catalysts can be regenerated without substantial loss of activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Cu/ZnO/Al2O3 commercial catalyst for methanol synthesis from syngas was investigated under operational conditions. HERFD XAS and EXAFS data were recorded under different reaction gas mixtures, temperatures, and pressures. Activation of the catalyst precursor occurred via a Cu+ intermediate. The active catalyst predominantly consists of metallic Cu and ZnO. Methanol production only starts when all accessible Cu is reduced. The structure of the active catalyst did not change with temperature or pressure even though the methanol yield changed strongly. Formation of a carbon-containing layer on top of the catalyst surface was detected by TPD, which was correlated with a several-hour induction period in the methanol production after the catalyst reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A reconfigurable reflectarray which exploits the dielectric anisotropy of liquid crystals (LC) has been designed to operate in the frequency range from 96 to 104 GHz. The unit cells are composed of three unequal length parallel dipoles placed above an LC substrate. The reflectarray has been designed using an accurate model which includes the effects of anisotropy and inhomogeneity. An effective permittivity that accounts for the real effects of the LC has also been used to simplify the analysis and design of the unit cells. The geometrical parameters of the cells have been adjusted to simultaneously improve the bandwidth, maximize the tunable phase-range and reduce the sensitivity to the angle of incidence. The performance of the LC based unit cells has been experimentally evaluated by measuring the reflection amplitude and phase of a reflectarray consisting of 52x54 identical cells. The good agreement between measurements and simulations validate the analysis and design techniques and demonstrate the capabilities of the proposed reflectarray to provide beam scanning in F band.