319 resultados para Parietal Bone
Resumo:
Studies of individual nutrients or foods have revealed much about dietary influences on bone. Multiple food or nutrient approaches, such as dietary pattern analysis, could offer further insight but research is limited and largely confined to older adults. We examined the relationship between dietary patterns, obtained by a posteriori and a priori methods, and bone mineral status (BMS; collective term for bone mineral content (BMC) and bone mineral density (BMD)) in young adults (20-25 years; n 489). Diet was assessed by 7 d diet history and BMD and BMC were determined at the lumbar spine and femoral neck (FN). A posteriori dietary patterns were derived using principal component analysis (PCA) and three a priori dietary quality scores were applied (dietary diversity score (DDS), nutritional risk score and Mediterranean diet score). For the PCA-derived dietary patterns, women in the top compared to the bottom fifth of the 'Nuts and Meat' pattern had greater FN BMD by 0.074 g/cm(2) (P=0.049) and FN BMC by 0.40 g (P=0.034) after adjustment for confounders. Similarly, men in the top compared to the bottom fifth of the 'Refined' pattern had lower FN BMC by 0.41 g (P-0.049). For the a priori DDS, women in the top compared to the bottom third had lower FN BMD by 0.05 g/cm(2) after adjustments (P=0.052), but no other relationships with BMS were identified. In conclusion, adherence to a 'Nuts and Meat' dietary pattern may be associated with greater BMS in young women and a 'Refined' dietary pattern may be detrimental for bone health in young men.
Resumo:
It has been suggested that increased intramedullary apoptosis may explain the paradox between peripheral blood cytopenias and the hyper- or normo-cellular bone marrow observed in the myelodysplastic syndromes (MDS). We wished to see if culture performance could be related to the presence of apoptotic cells in a group of patients with MDS (12 patients) and other patients with peripheral blood cytopenias (six patients) which caused diagnostic difficulty. There was no correlation between LTBMC or adherent cell growth and the presence of apoptotic cells in the original marrow sample. A variable degree of apoptosis was observed in both groups of patients. LTBMC profiles correlated well with diagnosis but were unrelated to the extent of intramedullary apoptosis. This suggests that apoptosis is a much more ubiquitous process in disease than previously thought. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A method was devised to grow haemopoietic cells in long-term bone marrow culture (LTBMC) which requires only 1 x 10(6) cells/culture. Such miniature cultures were used to study growth patterns of marrow from patients with myelodysplastic syndromes (MDS). Consistent differences in LTBMC cellularity and cellular composition were noted between MDS and normal marrow. These differences were accentuated by rGM-CSF. The criteria which distinguished between and MDS marrows were: cell count at weeks 1 and 4, % neutrophils and % blasts. In 10 patients with unexplained macrocytosis or pancytopenia miniature LTBMC results clearly segregated into either 'normal' or 'MDS' growth patterns. Miniature LTBMC with rGM-CSF may therefore be a useful diagnostic test for early MDS.
Resumo:
Proprioceptive information from the foot/ankle provides important information regarding body sway for balance control, especially in situations where visual information is degraded or absent. Given known increases in catastrophic injury due to falls with older age, understanding the neural basis of proprioceptive processing for balance control is particularly important for older adults. In the present study, we linked neural activity in response to stimulation of key foot proprioceptors (i.e., muscle spindles) with balance ability across the lifespan. Twenty young and 20 older human adults underwent proprioceptive mapping; foot tendon vibration was compared with vibration of a nearby bone in an fMRI environment to determine regions of the brain that were active in response to muscle spindle stimulation. Several body sway metrics were also calculated for the same participants on an eyes-closed balance task. Based on regression analyses, multiple clusters of voxels were identified showing a significant relationship between muscle spindle stimulation-induced neural activity and maximum center of pressure excursion in the anterior-posterior direction. In this case, increased activation was associated with greater balance performance in parietal, frontal, and insular cortical areas, as well as structures within the basal ganglia. These correlated regions were age- and foot-stimulation side-independent and largely localized to right-sided areas of the brain thought to be involved in monitoring stimulus-driven shifts of attention. These findings support the notion that, beyond fundamental peripheral reflex mechanisms, central processing of proprioceptive signals from the foot is critical for balance control.