263 resultados para ISOLATED PAPILLARY MUSCLE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report the primary structure of a novel peptide, named helokinestatin-5 (VPPPLQMPLIPR), from the venom of the Gila monster (Heloderma suspectum). Helokinestatin-5 differs in structure from helokinestatin-3 by deletion of a single prolyl residue in the N-terminally located polyproline region. Two different biosynthetic precursors were consistently cloned from a venom-derived cDNA library. The first encoded helokinestatins 1–4 and a single copy of C-type natriuretic peptide, as previously described, whereas the second was virtually identical, lacking only a single prolyl codon as found in the mature attenuated helokinestatin-5 peptide. Helokinestatins 1–3 and 5 were synthesized by solid-phase fmoc chemistry and each synthetic replicate was found to antagonize the relaxation effect induced by bradykinin on rat tail artery smooth muscle. Helokinestatins thus represent a novel family of vasoactive peptides from the venom of helodermatid lizards

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helokinestatins 1–5 represent a novel family of bradykinin antagonist peptides originally isolated from the venom of the Gila Monster, Heloderma suspectum. We found that they were encoded in tandem along with a single copy of C-type natriuretic peptide (CNP), by two different but almost identical biosynthetic precursors that were cloned from a venom-derived cDNA library. Here we have applied the same strategy to the venom of a related species, the Mexican beaded lizard, Heloderma horridum. Lyophilised venom was used as a surrogate tissue to generate a cDNA library that was interrogated with primers from the previous study and for reverse phase HPLC fractionation. The structure of a single helokinestatin precursor was obtained following sequencing of 20 different clones. The open-reading frame contained 196 amino acid residues, somewhat greater than the 177–178 residues of the corresponding helokinestatin precursors in H. suspectum. The reason for this difference in size was the insertion of an additional domain of 18 amino acid residues encoding an additional copy of helokinestatin-3. Helokinestatin-6 (GPPFNPPPFVDYEPR) was a novel peptide from this precursor identified in venom HPLC fractions. A synthetic replicate of this peptide antagonised the relaxation effect of bradykinin on rat arterial smooth muscle. The novel peptide family, the helokinestatins, have been shown to be present in the venom of H. horridum and to be encoded by a single precursor of different structure to those from H. suspectum. Studies such as this reveal the naturally-selected structures of bioactive peptides that have been optimised for purpose and provide the scientist with a natural analogue library for pharmacological investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tachykinins hylambatin and (Thr)11-hylambatin have been isolated from the defensive skin secretion of the African hyperoliid frog, Kassina maculata,. Hylambatin (DPPDPNRFYGMMamide) is revised in structure from the original sequence by a single site substitution (Asn/Asp at position 6), and (Thr)11-hylambatin, a novel tachykinin, differs in structure from hylambatin by a single Thr/Met substitution. (Thr)11-hylambatin is five- to ten-fold more abundant than hylambatin in secretions. Synthetic replicates of both peptides were active in smooth muscle preparations including the rat tail artery, rat ileum and bovine trachea. While hylambatin displayed activity consistent with an NK1-receptor ligand, (Thr)11-hylambatin was more active than either substance P or neurokinin A in both NK1- and NK-2 receptor rich preparations. Incorporation of a threoninyl residue rather than the canonical leucyl residue at the penultimate position in both substance P and neurokinin A, generated active ligands in both arterial and intestinal smooth muscle preparations. Hylambatin precursor cDNAs, designated HYBN-1 and HYBN-2, respectively, were cloned from a skin library by 3'- and 5'-RACE reactions. Both were highly-homologous containing open-reading frames of 66 amino acids encoding single copies of either hylambatin or (Thr)11-hylambatin. These data reveal a hitherto unrecognized structure/activity attribute of mammalian tachykinin receptors revealed though discovery of a novel amphibian skin-derived, site-substituted peptide ligand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To investigate the effects of arginine vasopressin (AVP) on Ca(2+) sparks and oscillations and on sarcoplasmic reticulum (SR) Ca(2+) content in retinal arteriolar myocytes. METHODS: Fluo-4-loaded smooth muscle in intact segments of freshly isolated porcine retinal arteriole was imaged by confocal laser microscopy. SR Ca(2+) store content was assessed by recording caffeine-induced Ca(2+) transients with microfluorimetry and fura-2. RESULTS: The frequencies of Ca(2+) sparks and oscillations were increased both during exposure to, and 10 minutes after washout of AVP (10 nM). Caffeine transients were increased in amplitude 10 and 90 minutes after a 3-minute application of AVP. Both AVP-induced Ca(2+) transients and the enhancement of caffeine responses after AVP washout were inhibited by SR 49059, a V(1a) receptor blocker. Forskolin, an activator of adenylyl cyclase, also persistently enhanced caffeine transients. Rp-8-HA-cAMPS, a membrane-permeant PKA inhibitor, prevented enhancement of caffeine transients by both AVP and forskolin. Forskolin, but not AVP, produced a reversible, Rp-8-HA-cAMPS insensitive reduction in basal [Ca(2+)](i). CONCLUSIONS: AVP activates a cAMP/PKA-dependent pathway via V(1a) receptors in retinal arteriolar smooth muscle. This effect persistently increases SR Ca(2+) loading, upregulating Ca(2+) sparks and oscillations, and may favor prolonged agonist activity despite receptor desensitization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE:
To investigate endothelin 1 (Et1)-dependent Ca(2+)-signaling at the cellular and subcellular levels in retinal arteriolar myocytes.
METHODS:
Et1 responses were imaged from Fluo-4-loaded smooth muscle in isolated segments of rat retinal arteriole using confocal laser microscopy.
RESULTS:
Basal [Ca(2+)](i), subcellular Ca(2+)-sparks, and cellular Ca(2+)-oscillations were all increased during exposure to Et1 (10 nM). Ca(2+)-spark frequency was also increased by 90% by 10 nM Et1. The increase in oscillation frequency was concentration dependent and was inhibited by the EtA receptor (Et(A)R) blocker BQ123 but not by the EtB receptor antagonist BQ788. Stimulation of Ca(2+)-oscillations by Et1 was inhibited by a phospholipase C blocker (U73122; 10 µM), two inhibitors of inositol 1,4,5-trisphosphate receptors (IP(3)Rs), xestospongin C (10 µM), 2-aminoethoxydiphenyl borate (100 µM), and tetracaine (100 µM), a blocker of ryanodine receptors (RyRs).
CONCLUSIONS:
Et1 stimulates Ca(2+)-sparks and oscillations through Et(A)Rs. The underlying mechanism involves the activation of phospholipase C and both IP(3)Rs and RyRs, suggesting crosstalk between these Ca(2+)-release channels. These findings suggest that phasic Ca(2+)-oscillations play an important role in the smooth muscle response to Et1 within the retinal microvasculature and support an excitatory, proconstrictor role for Ca(2+)-sparks in these vessels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive studies on bradykinin-related peptides (BRPs) generated from plasma kininogens in representative species of various vertebrate taxa, have confirmed that many amphibian skin BRPs reflect those present in putative vertebrate predators. For example, the (Val1, Thr6)-bradykinin, present in the defensive skin secretions of many ranids and phyllomedusines, can be generated from plasma kininogens in colubrid snakes - common predators of these frogs. Here, we report the presence of (Arg0, Trp5, Leu8)-bradykinin in the skin secretion of the European edible frog, Pelophylax kl. esculentus, and have found it to be encoded in single copy by a kininogen with an open-reading frame of 68 amino acid residues. This peptide is the archetypal bony fish bradykinin that has been generated from plasma kininogens of the bowfin (Amia calva), the long-nosed gar (Lepisosteus oseus) and the rainbow trout (Onchorhynchus mykiss). More recently, this peptide has been shown to be encoded within cloned kininogens of the Atlantic cod (Gadus morhua) spotted wolf-fish (Anarichas minor), zebrafish (Danio rerio), pufferfish (Tetraodon nigroviridis) and Northern pike (Esox lucius). The latter species is regarded as a major predator of P. kl. esculentus. Synthetic (Arg0, Trp5, Leu8)-bradykinin was previously reported as having multiphasic effects on arterial blood pressure in conscious trout and here we have demonstrated that it can antagonize the relaxation in rat arterial smooth muscle induced by canonical mammalian bradykinin. The discovery of (Arg0, Trp5, Leu8)-bradykinin in the defensive skin secretion of this amphibian completes the spectrum of vertebrate taxon-specific BRPs identified from this source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schistosomes are amongst the most important and neglected pathogens in the world, and schistosomiasis control relies almost exclusively on a single drug. The neuromuscular system of schistosomes is fertile ground for therapeutic intervention, yet the details of physiological events involved in neuromuscular function remain largely unknown. Short amidated neuropeptides, FMRFamide-like peptides (FLPs), are distributed abundantly throughout the nervous system of every flatworm examined and they produce potent myoexcitation. Our goal here was to determine the mechanism by which FLPs elicit contractions of schistosome muscle fibers. Contraction studies showed that the FLP Tyr-Ile-Arg-Phe-amide (YIRFamide) contracts the muscle fibers through a mechanism that requires Ca2+ influx through sarcolemmal voltage operated Ca2+ channels (VOCCs), as the contractions are inhibited by classical VOCC blockers nicardipine, verapamil and methoxyverapamil. Whole-cell patch-clamp experiments revealed that inward currents through VOCCs are significantly and reversibly enhanced by the application of 1 µM YIRFamide; the sustained inward currents were increased to 190% of controls and the peak currents were increased to 180%. In order to examine the biochemical link between the FLP receptor and the VOCCs, PKC inhibitors calphostin C, RO 31–8220 and chelerythrine were tested and all produced concentration dependent block of the contractions elicited by 1 µM YIRFamide. Taken together, the data show that FLPs elicit contractions by enhancing Ca2+ influx through VOCC currents using a PKC-dependent pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From defensive skin secretions acquired from two species of African hyperoliid frogs, Kassina maculata and Kassina senegalensis, we have isolated two structurally related, C-terminally amidated tridecapeptides of novel primary structure that exhibit a broad spectrum of biological activity. In reflection of their structural novelty and species of origin, we named the peptides kassorin M (FLEGLLNTVTGLLamide; 1387.8 Da) and kassorin S (FLGGILNTITGLLamide; 1329.8 Da), respectively. The primary structure and organisation of the biosynthetic precursors of kassorins M and S were deduced from cloned skin secretion-derived cDNA. Both open-reading frames encoded a single copy of kassorin M and S, respectively, located at the C-terminus. Kassorins display limited structural similarities to vespid chemotactic peptides (7/13 residues), temporin A (5/13 residues), the N-terminus of Lv-ranaspumin, a foam nest surfactant protein of the frog, Leptodactylus vastus, and an N-terminal domain of the equine sweat surfactant protein, latherin. Both peptides elicit histamine release from rat peritoneal mast cells. However, while kassorin S was found to possess antibacterial activity against Staphylococcus aureus, kassorin M was devoid of such activity. In contrast, kassorin M was found to contract the smooth muscle of guinea pig urinary bladder (EC50 = 4.66 nM) and kassorin S was devoid of this activity. Kassorins thus represent the prototypes of a novel family of peptides from the amphibian innate immune system as occurring in defensive skin secretions.