257 resultados para CHROMIUM IONS
Resumo:
Diagrammatic many-body theory is used to calculate the scattering phase shifts, normalized annihilation rates Zeff, and annihilation ? spectra for positron collisions with the hydrogenlike ions He+, Li2+, B4+, and F8+. Short-range electron-positron correlations and longer-range positron-ion correlations are accounted for by evaluating nonlocal corrections to the annihilation vertex and the exact positron self-energy. The numerical calculation of the many-body theory diagrams is performed using B-spline basis sets. To elucidate the role of the positron-ion repulsion, the annihilation rate is also estimated analytically in the Coulomb-Born approximation. It is found that the energy dependence and magnitude of Zeff are governed by the Gamow factor that characterizes the suppression of the positron wave function near the ion. For all of the H-like ions, the correlation enhancement of the annihilation rate is found to be predominantly due to corrections to the annihilation vertex, while the corrections to the positron wave function play only a minor role. Results of the calculations for s-, p-, and d-wave incident positrons of energies up to the positronium-formation threshold are presented. Where comparison is possible, our values are in excellent agreement with the results obtained using other, e.g., variational, methods. The annihilation-vertex enhancement factors obtained in the present calculations are found to scale approximately as 1+(1.6+0.46l)/Zi, where Zi is the net charge of the ion and l is the positron orbital angular momentum. Our results for positron annihilation in H-like ions provide insights into the problem of positron annihilation with core electrons in atoms and condensed matter systems, which have similar binding energies.
Resumo:
The measurements reported here provide scaling laws for the ion acceleration process in the regime of ultrashort (50 fs), ultrahigh contrast (10) and ultrahigh intensity (> 10W/cm ), never investigated previously. The scaling of the accelerated ion energies was studied by varying a number of parameters such as target thickness (down to 10nm), target material (C and Al) and laser light polar- ization (circular and linear) at 35° and normal laser incidence. A twofold increase in proton energy and an order of magnitude enhancement in ion flux have been observed over the investigated thickness range at 35° angle of incidence. Further- more, at normal laser incidence, measured peak proton energies of about 20 MeV are observed almost independently of the target thickness over a wide range (50nm- 10 µm). 1. © 2012 by Società Italiana di Fisica.
Resumo:
The acceleration of ions with high-power lasers has been a very active field of research during the past 10 years. This paper summarizes the main results obtained in the field, detailing the mechanisms of the acceleration process and the main observed beam characteristics. Perspectives for future development of the field and current and future applications are also discussed. © 2012 by Società Italiana di Fisica.
Resumo:
The scenario of electron capture and loss has been recently proposed for the formation of negative ion and neutral atom beams with up to MeV kinetic energy [S. Ter-Avetisyan, Appl. Phys. Lett. 99, 051501 (2011)]. Validation of these processes and of their generic nature is here provided in experiments where the ion source and the interaction medium have been spatially separated. Fast positive ions accelerated from a laser plasma source are sent through a cold spray where their charge is changed. Such formed neutral atom or negative ion has nearly the same momentum as the original positive ion. Experiments are released for protons, carbon, and oxygen ions and corresponding beams of negative ions and neutral atoms have been obtained. The electron capture and loss phenomenon is confirmed to be the origin of the negative ion and neutral atom beams. The equilibrium ratios of different charge components and cross sections have been measured. Our method is general and allows the creation of beams of neutral atoms and negative ions for different species which inherit the characteristics of the positive ion source.
Resumo:
Microwave heating reduces the preparation time and improves the adsorption quality of activated carbon. In this study, activated carbon was prepared by impregnation of palm kernel fiber with phosphoric acid followed by microwave activation. Three different types of activated carbon were prepared, having high surface areas of 872 m2 g-1, 1256 m2 g-1, and 952 m2 g-1 and pore volumes of 0.598 cc g-1, 1.010 cc g-1, and 0.778 cc g-1, respectively. The combined effects of the different process parameters, such as the initial adsorbate concentration, pH, and temperature, on adsorption efficiency were explored with the help of Box-Behnken design for response surface methodology (RSM). The adsorption rate could be expressed by a polynomial equation as the function of the independent variables. The hexavalent chromium adsorption rate was found to be 19.1 mg g-1 at the optimized conditions of the process parameters, i.e., initial concentration of 60 mg L-1, pH of 3, and operating temperature of 50 oC. Adsorption of Cr(VI) by the prepared activated carbon was spontaneous and followed second-order kinetics. The adsorption mechanism can be described by the Freundlich Isotherm model. The prepared activated carbon has demonstrated comparable performance to other available activated carbons for the adsorption of Cr(VI).
Resumo:
Biosorption of Cr(VI) onto date pit biomass has been investigated via kinetic studies as functions of initial Cr(VI) concentration, solution temperature and date pit particle size. Kinetic experiments indicated that chromate ions accumulate onto the date pits and then reduce to less toxic Cr(III) compounds. The López-García, Escudero and Park Cr(VI) biosorption kinetic models, which take into consideration the direct reduction, the passivation process and the follow-on decrease of the active surface area of reaction, were applied to the kinetic data. The models represented the experimental data accurately at low Cr(VI) concentration (0.480 mM) and small particle size (0.11–0.22 mm) at which the Cr(VI) was completely removed from the aqueous solution and completely reduced to Cr(III) after 420 min. Date pit biomass thus offers a green chemical process for the remediation of chromium from wastewater. This investigation will help researchers employ the adsorption-coupled reduction of Cr(VI) models and simplify their application to kinetic experimental data.
Resumo:
We present a first principles molecular dynamics (FPMD) study of the interaction of low energy, positively charged, carbon (C+) projectiles with amorphous solid water clusters at 30 K. Reactions involving the carbon ion at an initial energy of 11 eV and 1.7 eV with 30-molecule clusters have been investigated. Simulations indicate that the neutral isoformyl radical, COH, and carbon monoxide, CO, are the dominant products of these reactions. All these reactions are accompanied by the transfer of a proton from the reacting water molecule to the ice, where it forms a hydronium ion. We find that COH is formed either via a direct, "knock-out", mechanism following the impact of the C+ projectile upon a water molecule or by creation of a COH_2^+ intermediate. The direct mechanism is more prominent at higher energies. CO is generally produced following the dissociation of COH. More frequent production of the formyl radical, HCO, is observed here than in gas phase calculations. A less commonly occurring product is the dihydroxymethyl, CH(OH)_2, radical. Although a minor result, its existence gives an indication of the increasing chemical complexity which is possible in such heterogeneous environments.
Resumo:
The R-matrix method describing the scattering of low-energy electrons by complex atoms and ions is extended to include terms of the Breit-Pauli Hamiltonian. An application is made to the astrophysically important 1s 2s S-1s 2s2p P transition in Fe XXIII, where in the most accurate calculations carried out all terms of the 1s 2s, 1s2s2p and 1s2p configurations are included in the expansion describing the collision. This gives up to 28 coupled channels for each total angular momentum and parity which are solved on a CRAY-1. The collision strengths are increased by more than a factor of two from their non-relativistic values at all energies considered.
Resumo:
The combination of gold nanoparticles (AuNPs) with chromium-substituted hydrotalcite (Cr-HT) supports makes very efficient heterogeneous catalysts (Au/Cr-HT) for aerobic alcohol oxidation under soluble-base-free conditions. The Au-support synergy increases with increasing Cr content of the support and decreasing AuNP size. In situ UV-Raman, X-ray absorption and photoelectron spectroscopic studies firmly establish that the strong Au-Cr synergy is related to a Cr ↔ Cr redox cycle at the Au/Cr-HT interface, where O activation takes place accompanied by electron transfer from Cr-HT to Au. The interfacial Cr species can be reduced by surface Au-H hydride and negative-charged Au species to close the catalytic cycle. A study of kinetic isotope effect indicates that alcohol O-H cleavage is facilitated by the presence of Cr, making a-C-H bond cleavage step more rate-controlling. Accordingly, a dual synergistic effect of Au/Cr-HT catalysts on the activation of O2 and alcohol reactants is proposed.
Resumo:
Geogenic nickel (Ni), vanadium (V) and chromium (Cr) are present at elevated levels in soils in Northern Ireland. Whilst Ni, V and Cr total soil concentrations share common geological origins, their respective levels of oral bioaccessibility are influenced by different soil-geochemical factors. Oral bioaccessibility extractions were carried out on 145 soil samples overlying 9 different bedrock types to measure the bioaccessible portions of Ni, V and Cr. Principal component analysis identified two components (PC1 and PC2) accounting for 69% of variance across 13 variables from the Northern Ireland Tellus Survey geochemical data. PC1 was associated with underlying basalt bedrock, higher bioaccessible Cr concentrations and lower Ni bioaccessibility. PC2 was associated with regional variance in soil chemistry and hosted factors accounting for higher Ni and V bioaccessibility. Eight per cent of total V was solubilised by gastric extraction on average across the study area. High median proportions of bioaccessible Ni were observed in soils overlying sedimentary rock types. Whilst Cr bioaccessible fractions were low (max = 5.4%), the highest measured bioaccessible Cr concentration reached 10.0 mg kg-1, explained by factors linked to PC1 including high total Cr concentrations in soils overlying basalt bedrock.
Resumo:
In this work we report on the evaluation of electron-impact collision strengths and Maxwellian averaged effective collision strengths for the lowly-ionized Fe-peak elements Sc II and Ti II using the parallel R-matrix package RMATRX II.
Resumo:
This paper discusses one of the major outstanding problems in atomic collision physics, namely the accurate theoretical treatment of electron scattering from open d-shell systems, and explores how this issue has been addressed over recent years with the development of the new parallel R-matrix suite of codes. It focuses on one code in particular - the new parallel R-matrix package PRMAT, which has recently been extended to account for relativistic fine-structure effects. This program facilitates the determination of accurate electron-impact excitation rates for complex open 3d-shell systems including the astrophysically important Fe-peak ions such as Ni II, Fe II and Fe III. Results are presented for collision strengths and Maxwellian averaged effective collision strengths for the optically forbidden fine-structure transitions of Ni II. To our knowledge this is the most extensive calculation completed to date for this ion.
Resumo:
The icy surfaces of dust grains in the Interstellar Medium and those of comets, satellites and Kuiper Belt Objects are continuously exposed tophoton and charged particle irradiation. These energetic particles maysputter and induce chemical changes in the ices and the underlyingsurfaces.In the present work 258 nm thick O2 and H2O ices were deposited at 10 K with the thickness measured by a laser interferometer method. Asimple model fit to the reflected laser intensity as measured by aphotodiode detector enabled the refractive index of the ices to bedetermined. The ices were then irradiated with various singly and doublycharged ions such as He+, 13C+, N+, O+ , Ar+, 13C2+, N2+ and O2+ at 4keV. The decrease in ice thickness as a function of ion dose wasmonitored by a laser interferometer and the model used to determine thesputtering yield as shown in Figure 1.In the case of O2 ice thesputtering yields increased with increasing ion mass in good agreementwith a model calculation [Fama, J, Shi, R.A Baragiola, Surface Sci.,602, 156 (2007)]. In the case of O2 ice, O2+ has a significant lowersputtering yield when compared to O+. The sputtering yields for O2 icewere found to be at least 9 times larger compared to those for H2O ice.For H2O ice the sputter yields for C, N and O ions were found todecrease with increasing mass. Doubly charged C, N and O ions which werefound to have the same sputtering yield as the singly charged ionswithin the experimental errors. A preliminary TPD study was carried outusing a QMS to detect the desorbed species from water ice afterirradiation by 6 × 10^15 ions of 13C+ and 13C2+. The formation of13CO and 13CO2 was observed with the yield of 13CO almost of a factor of100 larger than of 13CO2. This is in contrast to our earlier work whereonly CO¬2 was observed.
Resumo:
Hydrous cerium oxide (HCO) was synthesized by intercalation of solutions of cerium(III) nitrate and sodium hydroxide and evaluated as an adsorbent for the removal of hexavalent chromium from aqueous solutions. Simple batch experiments and a 25 factorial experimental design were employed to screen the variables affecting Cr(VI) removal efficiency. The effects of the process variables; solution pH, initial Cr(VI) concentration, temperature, adsorbent dose and ionic strength were examined. Using the experimental results, a linear mathematical model representing the influence of the different variables and their interactions was obtained. Analysis of variance (ANOVA) demonstrated that Cr(VI) adsorption significantly increases with decreased solution pH, initial concentration and amount of adsorbent used (dose), but slightly decreased with an increase in temperature and ionic strength. The optimization study indicates 99% as the maximum removal at pH 2, 20 °C, 1.923 mM of metal concentration and a sorbent dose of 4 g/dm3. At these optimal conditions, Langmuir, Freundlich and Redlich–Peterson isotherm models were obtained. The maximum adsorption capacity of Cr(VI) adsorbed by HCO was 0.828 mmol/g, calculated by the Langmuir isotherm model. Desorption of chromium indicated that the HCO adsorbent can be regenerated using NaOH solution 0.1 M (up to 85%). The adsorption interactions between the surface sites of HCO and the Cr(VI) ions were found to be a combined effect of both anion exchange and surface complexation with the formation of an inner-sphere complex.