219 resultados para Beta-lactamases


Relevância:

20.00% 20.00%

Publicador:

Resumo:

β -type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus but is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapour deposition (PVD) and chemical vapour deposition (CVD) are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W CW fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using X-ray diffractometry (XRD), optical microscopy (OM), 3-D surface profile & contact angle measurements and nano-indentation test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4 V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4 V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly-developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence x-ray diffraction (GI-XRD) and x-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks’ solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiac neuronal nitric-oxide synthase (nNOS) has been described as a modulator of cardiac contractility. We have demonstrated previously that isoform 4b of the sarcolemmal calcium pump (PMCA4b) binds to nNOS in the heart and that this complex regulates beta-adrenergic signal transmission in vivo. Here, we investigated whether the nNOS-PMCA4b complex serves as a specific signaling modulator in the heart. PMCA4b transgenic mice (PMCA4b-TG) showed a significant reduction in nNOS and total NOS activities as well as in cGMP levels in the heart compared with their wild type (WT) littermates. In contrast, PMCA4b-TG hearts showed an elevation in cAMP levels compared with the WT. Adult cardiomyocytes isolated from PMCA4b-TG mice demonstrated a 3-fold increase in Ser(16) phospholamban (PLB) phosphorylation as well as Ser(22) and Ser(23) cardiac troponin I (cTnI) phosphorylation at base line compared with the WT. In addition, the relative induction of PLB phosphorylation and cTnI phosphorylation following isoproterenol treatment was severely reduced in PMCA4b-TG myocytes, explaining the blunted physiological response to the beta-adrenergic stimulation. In keeping with the data from the transgenic animals, neonatal rat cardiomyocytes overexpressing PMCA4b showed a significant reduction in nitric oxide and cGMP levels. This was accompanied by an increase in cAMP levels, which led to an increase in both PLB and cTnI phosphorylation at base line. Elevated cAMP levels were likely due to the modulation of cardiac phosphodiesterase, which determined the balance between cGMP and cAMP following PMCA4b overexpression. In conclusion, these results showed that the nNOS-PMCA4b complex regulates contractility via cAMP and phosphorylation of both PLB and cTnI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Impaired dark adaptation occurs commonly in vitamin A deficiency. OBJECTIVE: We sought to examine the responsiveness of dark-adaptation threshold to vitamin A and beta-carotene supplementation in Nepali women. DESIGN: The dark-adapted pupillary response was tested in 298 pregnant women aged 15-45 y in a placebo-controlled trial of vitamin A and beta-carotene; 131 of these women were also tested at 3 mo postpartum. Results were compared with those for 100 nonpregnant US women of similar age. The amount of light required for pupillary constriction was recorded after bleaching and dark adaptation. RESULTS: Pregnant women receiving vitamin A had better dark-adaptation thresholds (-1.24 log cd/m(2)) than did those receiving placebo (-1.11 log cd/m(2); P: = 0. 03) or beta-carotene (-1.13 log cd/m(2); P: = 0.05) (t tests with Bonferroni correction). Dark-adaptation threshold was associated with serum retinol concentration in pregnant women receiving placebo (P: = 0.001) and in those receiving beta-carotene (P: = 0.003) but not in those receiving vitamin A. Among women receiving placebo, mean dark-adaptation thresholds were better during the first trimester (-1.23 log cd/m(2)) than during the second and third trimesters (-1.03 log cd/m(2); P: = 0.02, t test). The mean threshold of nonpregnant US women (-1.35 log cd/m(2)) was better than that of all 3 Nepali groups (P: < 0.001, t test, for all 3 groups). CONCLUSIONS: During pregnancy, pupillary dark adaptation was strongly associated with serum retinol concentration and improved significantly in response to vitamin A supplementation. This noninvasive testing technique is a valid indicator of population vitamin A status in women of reproductive age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extended-spectrum β-lactamase (ESBL) production and the prevalence of the β-lactamase-encoding gene blaTEM were determined in Prevotella isolates (n=50) cultured from the respiratory tract of adults and young people with cystic fibrosis (CF). Time-kill studies were used to investigate the concept of passive antibiotic resistance and to ascertain whether a β-lactamase-positive Prevotella isolate can protect a recognised CF pathogen from the action of ceftazidime in vitro. The results indicated that approximately three-quarters (38/50; 76%) of Prevotella isolates produced ESBLs. Isolates positive for ESBL production had higher minimum inhibitory concentrations (MICs) of β-lactam antibiotics compared with isolates negative for production of ESBLs (P<0.001). The blaTEM gene was detected more frequently in CF Prevotella isolates from paediatric patients compared with isolates from adults (P=0.002), with sequence analysis demonstrating that 21/22 (95%) partial blaTEM genes detected were identical to blaTEM-116. Furthermore, a β-lactamase-positive Prevotella isolate protected Pseudomonas aeruginosa from the antimicrobial effects of ceftazidime (P=0.03). Prevotella isolated from the CF respiratory microbiota produce ESBLs and may influence the pathogenesis of chronic lung infection via indirect methods, including shielding recognised pathogens from the action of ceftazidime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beta-type Ti-alloy is a promising biomedical implant material as it has a low Young’s modulus and is also known to have inferior surface hardness. Various surface treatments can be applied to enhance the surface hardness. Physical vapor deposition and chemical vapor deposition are two examples of this but these techniques have limitations such as poor interfacial adhesion and high distortion. Laser surface treatment is a relatively new surface modification method to enhance the surface hardness but its application is still not accepted by the industry. The major problem of this process involves surface melting which results in higher surface roughness after the laser surface treatment. This paper will report the results achieved by a 100 W continuous wave (CW) fiber laser for laser surface treatment without the surface being melted. Laser processing parameters were carefully selected so that the surface could be treated without surface melting and thus the surface finish of the component could be maintained. The surface and microstructural characteristics of the treated samples were examined using x-ray diffractometry, optical microscopy, three-dimensional surface profile and contact angle measurements, and nanoindentation test.