247 resultados para Argon plasmas
Resumo:
Linearly polarized solitary waves, arising from the interaction of an intense laser pulse with a plasma, are investigated. Localized structures, in the form of exact numerical nonlinear solutions of the one-dimensional Maxwell-fluid model for a cold plasma with fixed ions, are presented. Unlike stationary circularly polarized solitary waves, the linear polarization gives rise to a breather-type behavior and a periodic exchange of electromagnetic energy and electron kinetic energy at twice the frequency of the wave. A numerical method based on a finite-differences scheme allows us to compute a branch of solutions within the frequency range Ωmin<Ω<ωpe, where ωpe and Ωmin are the electron plasma frequency and the frequency value for which the plasma density vanishes locally, respectively. A detailed description of the spatiotemporal structure of the waves and their main properties as a function of Ω is presented. Small-amplitude oscillations appearing in the tail of the solitary waves, a consequence of the linear polarization and harmonic excitation, are explained with the aid of the Akhiezer-Polovin system. Direct numerical simulations of the Maxwell-fluid model show that these solitary waves propagate without change for a long time.
Resumo:
A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrödinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.
Resumo:
We report on the unequal spacing attosecond pulse trains from relativistic surface plasmas. The surface high harmonics efficiency is determined and could be enhanced using an optimized plasma scale length and density.
Resumo:
In this work, a laser-produced plasma extreme ultraviolet source and a free electron laser were used to create Ne photo-ionized plasmas. In both cases, a radiation beam was focused onto a gas stream injected into a vacuum chamber synchronously with the radiation pulse. Extreme ultraviolet radiation from the plasma spanned a wide spectral range with pronounced maximum centered at lambda = 11 +/- 1 nm while the free electron laser pulses were emitted at a wavelength of 32 nm. The power density of the focused plasma radiation was approximately 2 x 10(7) W/cm(2) and was seven orders of magnitude lower compared with the focused free electron laser beam. Radiation fluences in both experimental conditions were comparable. Despite quite different spectral characteristics and extremely different power densities, emission spectra of both photo-ionized plasmas consist of the same spectral lines within a wavelength range of 20 to 50 nm, however, with different relative intensities of the corresponding lines. The dominating spectral lines originated from singly charged ions (Ne II); however, Ne III lines were also detected. Additionally, computer simulations of the emission spectra, obtained for photo-ionized plasmas, driven by the plasma extreme ultraviolet source, were performed. The corresponding measured and calculated spectra are presented. An electron temperature and ionic composition were estimated. Differences between the experimental spectra, obtained for both irradiation conditions, were analyzed. The differences were attributed mainly to different energies of driving photons.
Resumo:
A spectroscopic study of the He-alpha (1s(2) S-1(0) - 1s2p P-1(1)) line emission (4749.73 eV) from high density plasma was conducted. The plasma was produced by irradiating Ti targets with intense (I approximate to 1x10(19) W/cm(2)), 400nm wavelength high contrast, short (45fs) p-polarized laser pulses at an angle of 45 degrees. A line shift up to 3.4 +/- 1.0 eV (1.9 +/- 0.55 m angstrom) was observed in the He-alpha line. The line width of the resonance line at FWHM was measured to be 12.1 +/- 0.6 eV (6.7 +/- 0.35 m angstrom). For comparison, we looked into the emission of the same spectral line from plasma produced by irradiating the same target with laser pulses of reduced intensities (approximate to 10(17) W/cm(2)): we observed a spectral shift of only 1.8 +/- 1.0 eV (0.9 +/- 0.55m angstrom) and the line-width measures up to 5.8 +/- 0.25 eV (2.7 +/- 0.35 m angstrom). These data provide evidence of plasma polarization shift of the Ti He-alpha line.
Resumo:
The detailed knowledge of fast electron energy transport following interaction with high-intensity, ultra-short laser pulses is a key area for secondary source generation for ELI. We demonstrate polarization spectroscopy at laser intensities up to 10(21) Wcm(-2). This is significant as it suggests that in situ emission spectroscopy may be used as an effective probe of fast electron velocity distributions in regimes relevant to electron transport in solid targets. Ly-alpha doublet emission of nickel (Z = 28) and sulphur (Z = 16) is observed to measure the degree of polarization from the Ly-alpha(1) emission. Ly-alpha(2) emission is unpolarized, and as such acts as a calibration source between spectrometers. The measured ratio of the X-ray sigma- and pi-polarization allows the possibility to infer the velocity distribution function of the fast electron beam.
Resumo:
This paper reports the progress made at JET-ILW on integrating the requirements of the reference ITER baseline scenario with normalized confinement factor of 1, at a normalized pressure of 1.8 together with partially detached divertor whilst maintaining these conditions over many energy confinement times. The 2.5 MA high triangularity ELMy H-modes are studied with two different divertor configurations with D-gas injection and nitrogen seeding. The power load reduction with N seeding is reported. The relationship between an increase in energy confinement and pedestal pressure with triangularity is investigated. The operational space of both plasma configurations is studied together with the ELM energy losses and stability of the pedestal of unseeded and seeded plasmas. The achievement of stationary plasma conditions over many energy confinement times is also reported.
Resumo:
The influence of nonlinear frequency coupling in an oxygen plasma excited by two odd harmonics at moderate pressure is investigated using a numerical model. Through variations in the voltage ratio and phase shift between the frequency components changes in ionization dynamics and sheath voltages are demonstrated. Furthermore, a regime in which the voltage drop across the plasma sheath is minimised is identified. This regime provides a significantly higher ion flux than a single frequency discharge driven by the lower of the two frequencies alone. These operating parameters have potential to be exploited for plasma processes requiring low ion bombardment energies but high ion fluxes.
Resumo:
The main populating and depopulating mechanisms of the excited energy levels of ions in plasmas with densities <1023-1024 m-3 are electron collisional excitation from the ion's ground state and radiative decay, respectively, with the majority of the electron population being in the ground state of the ionization stage. Electron collisional ionization is predominately expected to take place from one ground state to that of the next higher ionization stage. However, the question arises as to whether, in some cases, ionization can also affect the excited level populations. This would apply particularly to those cases involving transient events such as impurity influxes in a laboratory plasma. An analysis of the importance of ionization in populating the excited levels of ions in plasmas typical of those found in the edge of tokamaks is undertaken for the C IV and C V ionization stages. The emphasis is on those energy levels giving rise to transitions of most use for diagnostic purposes (n ≤ 5). Carbon is chosen since it is an important contaminant of JET plasmas; it was the dominant low Z impurity before the installation of the ITER-like wall and is still present in the plasma after its installation. Direct electron collisional ionization both from and to excited levels is considered. Distorted-wave flexible atomic code calculations are performed to generate the required ionization cross sections, due to a lack of atomic data in the literature. Employing these data, ionization from excited level populations is not found to be significant in comparison with radiative decay. However, for some energy levels, ionization terminating in the excited level has an effect in the steady-state of the order of the measurement errors (±10%). During transient events, ionization to excited levels will be of more importance and must be taken into account in the calculation of excited level populations. More accurate atomic data, including possible resonance contributions to the cross sections, would tend to increase further the importance of these effects.
Resumo:
Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory. (c) 2015 AIP Publishing LLC.
Resumo:
The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.
Resumo:
Ultraintense laser pulses with a few-cycle rising edge are ideally suited to accelerating ions from ultrathin foils, and achieving such pulses in practice represents a formidable challenge. We show that such pulses can be obtained using sufficiently strong and well-controlled relativistic nonlinearities in spatially well-defined near-critical-density plasmas. The resulting ultraintense pulses with an extremely steep rising edge give rise to significantly enhanced carbon ion energies consistent with a transition to radiation pressure acceleration.
Resumo:
We study synchrotron radiation emission from laser interaction with near critical density (NCD) plasmas at intensities of 1021 W∕cm2 using three-dimensional particle-in-cell simulations. It is found that the electron dynamics depend on the laser shaping process in NCD plasmas, and thus the angular distribution of the emitted photons changes as the laser pulse evolves in space and time. The final properties of the resulting synchrotron radiation, such as its overall energy, the critical photon energy, and the radiation angular distribution, are strongly affected by the laser polarization and plasma density. By using a 420 TW∕50 fs laser pulse at the optimal plasma density (∼1nc ), about 108 photons/0.1% bandwidth are produced at multi-MeV photon energies, providing a route to ultraintense, femtosecond gamma ray pulses.
Resumo:
The linear and nonlinear properties of small-amplitude electron-acoustic solitary waves are investigated via the fluid dynamical approach. A three-component plasma is considered, composed of hot electrons, cold electrons, and ions (considered stationary at the scale of interest). A dissipative (wave damping) effect is assumed due to electron-neutral collisions. The background (hot) electrons are characterized by an energetic (excessively superthermal) population and are thus modeled via a κ-type nonthermal distribution. The linear characteristics of electron-acoustic excitations are discussed, for different values of the plasma parameters (superthermality index κ and cold versus hot electron population concentration β). Large wavelengths (beyond a threshold value) are shown to be overdamped. The reductive perturbation technique is used to derive a dissipative Korteweg de-Vries (KdV) equation for small-amplitude electrostatic potential disturbances. These are expressed by exact solutions in the form of dissipative solitary waves, whose dynamics is investigated analytically and numerically. Our results should be useful in elucidating the behavior of space and experimental plasmas characterized by a coexistence of electron populations at different temperatures, where electron-neutral collisions are of relevance.
Resumo:
A scheme for enhanced quantum electrodynamics (QED) production of electron-positron-pair plasmas is proposed that uses two ultraintense lasers irradiating a thin solid foil from opposite sides. In the scheme, under a proper matching condition, in addition to the skin-depth emission of gamma-ray photons and Breit-Wheeler creation of pairs on each side of the foil, a large number of high-energy electrons and photons from one side can propagate through it and interact with the laser on the other side, leading to much enhanced gamma-ray emission and pair production. More importantly, the created pairs can be collected later and confined to the center by opposite laser radiation pressures when the foil becomes transparent, resulting in the formation of unprecedentedly overdense and high-energy pair plasmas. Two-dimensional QED particle-in-cell simulations show that electron-positron-pair plasmas with overcritical density 10(22) cm(-3) and a high energy of 100s of MeV are obtained with 10 PW lasers at intensities 10(23) W/cm(2), which are of key significance for laboratory astrophysics studies.