249 resultados para pseudomonas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These 'microbial weeds' are able to dominate the communities that develop in fertile but uncolonized - or at least partially vacant - habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a 'dustbin' group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential therapeutic value of cell-based therapy with mesenchymal stem cells (MSC) has been reported in mouse models of polymicrobial peritoneal sepsis. However, the mechanisms responsible for the beneficial effects of MSC have not been well defined. Therefore, we tested the therapeutic effect of intravenous bone marrow-derived human MSC in peritoneal sepsis induced by gram-negative bacteria. At 48 h, survival was significantly increased in mice treated with intravenous MSC compared with control mice treated with intravenous fibroblasts (3T3) or intravenous PBS. There were no significant differences in the levels of TNF-a, macrophage inflammatory protein 2, or IL-10 in the plasma. However, there was a marked reduction in the number of bacterial colony-forming units of Pseudomonas aeruginosa in the blood of MSC-treated mice compared with the 3T3 and PBS control groups. In addition, phagocytic activity was increased in blood monocytes isolated from mice treated with MSC compared with the 3T3 and PBS groups. Furthermore, levels of C5a anaphylotoxin were elevated in the blood of mice treated with MSC, a finding that was associated with upregulation of the phagocytosis receptor CD11b on monocytes. The phagocytic activity of neutrophils was not different among the groups. There was also an increase in alternately activated monocytes/macrophages (CD163- and CD206-positive) in the spleen of the MSC-treated mice compared with the two controls. Thus intravenous MSC increased survival from gram-negative peritoneal sepsis, in part by a monocyte-dependent increase in bacterial phagocytosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent in vivo studies indicate that mesenchymal stem cells (MSCs) may have beneficial effects in the treatment of sepsis induced by bacterial infection. Administration of MSCs in these studies improved survival and enhanced bacterial clearance. The primary objective of this study was to test the hypothesis that human MSCs possessed intrinsic antimicrobial properties. We studied the effect of human MSCs derived from bone marrow on the bacterial growth of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. MSCs as well as their conditioned medium (CM) demonstrated marked inhibition of bacterial growth in comparison with control medium or normal human lung fibroblasts (NHLF). Analysis of expression of major antimicrobial peptides indicated that one of the factors responsible for the antimicrobial activity of MSC CM against Gram-negative bacteria was the human cathelicidin antimicrobial peptide, hCAP-18/LL-37. Both m-RNA and protein expression data showed that the expression of LL-37 in MSCs increased after bacterial challenge. Using an in vivo mouse model of E. coli pneumonia, intratracheal administration of MSCs reduced bacterial growth (in colony-forming unit) in the lung homogenates and in the bronchoalveolar lavage (BAL) fluid, and administration of MSCs simultaneously with a neutralizing antibody to LL-37 resulted in a decrease in bacterial clearance. In addition, the BAL itself from MSC-treated mice had a greater antimicrobial activity in comparison with the BAL of phosphate buffered saline (PBS)-treated mice. Human bone marrow-derived MSCs possess direct antimicrobial activity, which is mediated in part by the secretion of human cathelicidin hCAP-18/ LL-37.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antimicrobial peptides (APs) are important host weapons against infections. Nearly all APs are cationic and their microbicidal action is initiated through interactions with the anionic bacterial surface. It is known that pathogens have developed countermeasures to resist these agents by reducing the negative charge of membranes, by active efflux and by proteolytic degradation. Here we uncover a new strategy of resistance based on the neutralization of the bactericidal activity of APs by anionic bacterial capsule polysaccharide (CPS). Purified CPSs from Klebsiella pneumoniae K2, Streptococcus pneumoniae serotype 3 and Pseudomonas aeruginosa increased the resistance to polymyxin B of an unencapsulated K. pneumoniae mutant. Furthermore, these CPSs increased the MICs of polymyxin B and human neutrophil alpha-defensin 1 (HNP-1) for unencapsulated K. pneumoniae, Escherichia coli and P. aeruginosa PAO1. Polymyxin B or HNP-1 released CPS from capsulated K. pneumoniae, S. pneumoniae serotype 3 and P. aeruginosa overexpressing CPS. Moreover, this material also reduced the bactericidal activity of APs. We postulate that APs may trigger in vivo the release of CPS, which in turn will protect bacteria against APs. We found that anionic CPSs, but not cationic or uncharged ones, blocked the bactericidal activity of APs by binding them, thereby reducing the amount of peptides reaching the bacterial surface. Supporting this, polycations inhibited such interaction and the bactericidal activity was restored. We postulate that trapping of APs by anionic CPSs is an additional selective virulence trait of these molecules, which could be considered as bacterial decoys for APs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The treatment of infections caused by bacteria resistant to the vast majority of antibiotics is a challenge worldwide. Antimicrobial peptides (APs) make up the front line of defense in those areas exposed to microorganisms, and there is intensive research to explore their use as new antibacterial agents. On the other hand, it is known that subinhibitory concentrations of antibiotics affect the expression of numerous bacterial traits. In this work we evaluated whether treatment of bacteria with subinhibitory concentrations of quinolones may alter the sensitivity to APs. A 1-h treatment of Klebsiella pneumoniae with 0.25 x the MIC of ciprofloxacin rendered bacteria more sensitive to polymyxins B and E, human neutrophil defensin 1, and beta-defensin 1. Levofloxacin and nalidixic acid at 0.25 x the MICs also increased the sensitivity of K. pneumoniae to polymyxin B, whereas gentamicin and ceftazidime at 0.25 x the MICs did not have such an effect. Ciprofloxacin also increased the sensitivities of K. pneumoniae ciprofloxacin-resistant strains to polymyxin B. Two other pathogens, Pseudomonas aeruginosa and Haemophilus influenzae, also became more sensitive to polymyxins B and E after treatment with 0.25 x the MIC of ciprofloxacin. Incubation with ciprofloxacin did not alter the expression of the K. pneumoniae loci involved in resistance to APs. A 1-N-phenyl-naphthylamine assay showed that ciprofloxacin and levofloxacin increased the permeabilities of the K. pneumoniae and P. aeruginosa outer membranes, while divalent cations antagonized this action. Finally, we demonstrated that ciprofloxacin and levofloxacin increased the binding of APs to the outer membrane by using dansylated polymyxin B.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) is important for the regulation of a number of diverse biological processes, including vascular tone, neurotransmission, inflammatory cell responsiveness, defence against invading pathogens and wound healing. Transition metal exchanged zeolites are nanoporous materials with high-capacity storage properties for gases such as NO. The NO stores are liberated upon contact with aqueous environments, thereby making them ideal candidates for use in biological and clinical settings. Here, we demonstrate the NO release capacity and powerful bactericidal properties of a novel NO-storing Zn2+-exchanged zeolite material at a 50 wt.% composition in a polytetrafluoroethylene polymer. Further to our published data showing the anti-thrombotic effects of a similar NO-loaded zeolite, this study demonstrates the antibacterial properties of NO-releasing zeolites against clinically relevant strains of bacteria, namely Gram-negative Pseudomonas aeruginosa and Gram-positive methicillin-sensitive and methicillin-resistant Staphylococcus aureus and Clostridium difficile. Thus our study highlights the potential of NO-loaded zeolites as biocompatible medical device coatings with anti-infective properties. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, the Infectious Diseases Society of America has highlighted a faction of antibiotic-resistant bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) - acronymically dubbed 'the ESKAPE pathogens' - capable of 'escaping' the biocidal action of antibiotics and mutually representing new paradigms in pathogenesis, transmission and resistance. This review aims to consolidate clinically relevant background information on the ESKAPE pathogens and provide a contemporary summary of bacterial resistance, alongside pertinent microbiological considerations necessary to face the mounting threat of antimicrobial resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The overall antibiotic resistance of a bacterial population results from the combination of a wide range of susceptibilities displayed by subsets of bacterial cells. Bacterial heteroresistance to antibiotics has been documented for several opportunistic Gram-negative bacteria, but the mechanism of heteroresistance is unclear. We use Burkholderia cenocepacia as a model opportunistic bacterium to investigate the implications of heterogeneity in the response to the antimicrobial peptide polymyxin B (PmB) and also other bactericidal antibiotics. Here, we report that B. cenocepacia is heteroresistant to PmB. Population analysis profiling also identified B. cenocepacia subpopulations arising from a seemingly homogenous culture that are resistant to higher levels of polymyxin B than the rest of the cells in the culture, and can protect the more sensitive cells from killing, as well as sensitive bacteria from other species, such as Pseudomonas aeruginosa and Escherichia coli. Communication of resistance depended on upregulation of putrescine synthesis and YceI, a widely conserved low-molecular weight secreted protein. Deletion of genes for the synthesis of putrescine and YceI abrogate protection, while pharmacologic inhibition of putrescine synthesis reduced resistance to polymyxin B. Polyamines and YceI were also required for heteroresistance of B. cenocepacia to various bactericidal antibiotics. We propose that putrescine and YceI resemble "danger" infochemicals whose increased production by a bacterial subpopulation, becoming more resistant to bactericidal antibiotics, communicates higher level of resistance to more sensitive members of the population of the same or different species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although antibiotics from different classes are frequently prescribed in combination to prevent the development of resistance amongst Cystic Fibrosis (CF) respiratory pathogens, there is a lack of data as to the efficacy of this approach. We have previously shown that a 4:1 (w/w) combination of fosfomycin and tobramycin (F:T) has excellent activity against CF pathogens with increased activity under physiologically relevant anaerobic conditions. Therefore, the aim of this study was to determine whether F:T could delay or prevent the onset of resistance compared to either fosfomycin or tobramycin alone under aerobic and anaerobic conditions. The frequency of spontaneous mutants arising following exposure to fosfomycin, tobramycin and F:T was determined for clinical Pseudomonas aeruginosa and MRSA isolates under aerobic and anaerobic conditions. The effect of sub-inhibitory concentrations of fosfomycin, tobramycin and F:T on the induction of resistance was also investigated, with the stability of resistance and fitness cost associated with resistance assessed if it developed. P. aeruginosa and MRSA isolates had a lower frequency of spontaneous mutants to F:T compared to fosfomycin and tobramycin under both aerobic and anaerobic conditions. There was a maximum two-fold increase in F:T MICs when P. aeruginosa and MRSA isolates were passaged in sub-inhibitory F:T for 12 days. In contrast, sequential resistance to fosfomycin and tobramycin developed quickly (n = 3 days for both) after passage in sub-inhibitory concentrations. Once developed, both fosfomycin and tobramycin resistance was stable and not associated with a biological fitness cost to either P. aeruginosa or MRSA isolates. The results of this study suggest that F:T may prevent the development of resistance compared to fosfomycin or tobramycin alone under aerobic and physiologically relevant anaerobic conditions. F:T may be a potential treatment option in CF patients chronically colonised by MRSA and/or P. aeruginosa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biotransformation of acridine, dictamnine and 4-chlorofuro[2,3-b]quinolone, using whole cells of Sphingomonas yanoikuyae B8/36, yielded five enantiopure cyclic cis-dihydrodiols, from biphenyl dioxygenase-catalysed dihydroxylation of the carbocyclic rings. cis-Dihydroxylation of the furan ring in dictamnine and 4-chlorofuro[2,3-b] quinoline, followed by ring opening and reduction, yielded two exocyclic diols. The structures and absolute configurations of metabolites have been determined by spectroscopy and stereochemical correlation methods. Enantiopure arene oxide metabolites of acridine and dictamnine have been synthesised, from the corresponding cis-dihydrodiols. The achiral furoquinoline alkaloids robustine, gamma-fagarine, haplopine, isohaplopine-3,3'-dimethylallylether and pteleine have been obtained, from either cis-dihydrodiol, catechol or arene oxide metabolites of dictamnine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background
Chronic Pseudomonas aeruginosa pulmonary infection is associated with a decline in lung function and reduced survival in people with Cystic Fibrosis (CF). Damaging inflammatory and immunological mediators released in the lungs can be used as markers of chronic infection, inflammation and lung tissue damage.

Methods
Clinical samples were collected from CF patients and healthy controls. Serum IgG and IgA anti-Pseudomonas antibodies, sputum IL-8 and TNFα, plasma IL-6 and urine TNFr1 were measured by ELISA. Sputum neutrophil elastase (NE), cathepsin S and cathepsin B were measured by spectrophotometric and fluorogenic assays. The relationship between IgG and IgA, inflammatory mediators and long-term survival was determined.

Results
IgG and IL-6 positively correlated with mortality. However, multivariate analysis demonstrated that after adjusting for FEV1, IgG was not independently related to mortality. A relationship was observed between IgG and IL-6, TNFα, TNFr1 and between IgA and IL8, cathepsin S and cathepsin B.

Conclusions
These data indicate that biomarkers of inflammation are not independent predictors of survival in people with CF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric pressure non-thermal plasma (APNTP) has been gaining increasing interest as a new alternative antibacterial approach. Although this approach has demonstrated promising antibacterial activity, its exact mechanism of action remains unclear. Mechanistic elucidation of the antimicrobial activity will facilitate development and rational optimisation of this approach for potential medical applications. In this study, the antibacterial efficacy of an in-house-built APNTP jet was evaluated alongside an investigation of the interactions between APNTP and major cellular components in order to identify the potential cellular targets involved in plasma-mediated bacterial destruction mechanisms. The investigated plasma jet exhibited excellent, rapid antibacterial activity against a selected panel of clinically significant bacterial species including Bacillus cereus, meticillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa, all of which were completely inactivated within 2 min of plasma exposure. Plasma-mediated damaging effects were observed, to varying degrees, on all of the investigated cellular components including DNA, a model protein enzyme, and lipid membrane integrity and permeability. The antibacterial efficacy of APNTP appears to involve a multiple-target mechanism, which potentially reduces the likelihood of emergence of microbial resistance towards this promising antimicrobial approach. However, cellular membrane damage and resulting permeability perturbation was found to be the most likely rate-determining step in this mechanism. Crown Copyright © 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: There is great urgency for alternate sources of antibiotics to be identified. One relatively untapped source of novel bioproducts, including antimicrobials, is organisms derived from extreme environments. Halophiles (which require high salt concentrations) are one such group which is being increasingly explored for their biotechnological potential. The aim of this study was to identify halophilic environmental isolates which possessed in vitro and in vivo antimicrobial and antibiofilm activities. Methods: 73 halophilic bacteria and archaea were isolated from Kilroot salt mine in Northern Ireland. Culture extracts of each isolate were screened for antimicrobial and antibiofilm activity against numerous pathogenic bacteria, including Staphylococcus species and Pseudomonas aeruginosa, both model strains and clinical isolates. The methods used included disc diffusion assays of crude extracts, MIC screening, the MBEC assay, and an in vivo model based on the Greater Wax Moth (Galleria mellonella). Results: The assays indicated >50% of extracts displayed antimicrobial and antibiofilm activity against at least one pathogen, the majority being Staphylococcus species, but also E. coli and P. aeruginosa. Biofilms were either reduced or eradicated by halophile extracts when tested with the MBEC device. Further experiments demonstrated that these effects could be replicated in vivo, with extracts reducing the severity of infections and enhancing the survival of infected G. mellonella. Conclusions: The importance of extremophiles to pharmaceutical research should not be underestimated. While not yet fully characterised, based on the data obtained, the halophiles isolated during this study may provide a promising reservoir of novel antimicrobial and antibiofilm compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum biofilm eradication concentration (MBEC) and kill kinetics were established for vancomycin, rifampicin, trimethoprim, gentamicin, and ciprofloxacin against the biofilm forming bacteria Staphylococcus epidermidis (ATCC 35984), Staphylococcus aureus (ATCC 29213), Methicillin Resistant Staphylococcus aureus (MRSA) (ATCC 43300), Pseudomonas aeruginosa (PAO1), and Escherichia coli (NCTC 8196). MICs and MBCs were determined via broth microdilution in 96-well plates. MBECs were studied using the Calgary Biofilm Device. Values obtained were used to investigate the kill kinetics of conventional antimicrobials against a range of planktonic and biofilm microorganisms over a period of 24 hours. Planktonic kill kinetics were determined at 4xMIC and biofilm kill kinetics at relative MBECs. Susceptibility of microorganisms varied depending on antibiotic selected and phenotypic form of bacteria. Gram-positive planktonic isolates were extremely susceptible to vancomycin (highest MBC: 7.81 mg L−1: methicillin sensitive and resistant S. aureus) but no MBEC value was obtained against all biofilm pathogens tested (up to 1000 mg L−1). Both gentamicin and ciprofloxacin displayed the broadest spectrum of activity with MIC and MBCs in the mg L−1 range against all planktonic isolates tested and MBEC values obtained against all but S. epidermidis (ATCC 35984) and MRSA (ATCC 43300).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Human bone marrow-derived mesenchymal stem (stromal) cells (hMSCs) improve survival in mouse models of acute respiratory distress syndrome (ARDS) and reduce pulmonary oedema in a perfused human lung preparation injured with Escherichia coli bacteria. We hypothesised that clinical grade hMSCs would reduce the severity of acute lung injury (ALI) and would be safe in a sheep model of ARDS.

Methods Adult sheep (30–40 kg) were surgically prepared. After 5 days of recovery, ALI was induced with cotton smoke insufflation, followed by instillation of live Pseudomonas aeruginosa (2.5×1011 CFU) into both lungs under isoflurane anaesthesia. Following the injury, sheep were ventilated, resuscitated with lactated Ringer's solution and studied for 24 h. The sheep were randomly allocated to receive one of the following treatments intravenously over 1 h in one of the following groups: (1) control, PlasmaLyte A, n=8; (2) lower dose hMSCs, 5×106 hMSCs/kg, n=7; and (3) higher-dose hMSCs, 10×106 hMSCs/kg, n=4.

Results By 24 h, the PaO2/FiO2 ratio was significantly improved in both hMSC treatment groups compared with the control group (control group: PaO2/FiO2 of 97±15 mm Hg; lower dose: 288±55 mm Hg (p=0.003); higher dose: 327±2 mm Hg (p=0.003)). The median lung water content was lower in the higher-dose hMSC-treated group compared with the control group (higher dose: 5.0 g wet/g dry [IQR 4.9–5.8] vs control: 6.7 g wet/g dry [IQR 6.4–7.5] (p=0.01)). The hMSCs had no adverse effects.

Conclusions Human MSCs were well tolerated and improved oxygenation and decreased pulmonary oedema in a sheep model of severe ARDS.