207 resultados para electron emission measurements


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a nonperturbative R-matrix with PseudoStates (RMPS) calculation for the electron-impact ionization cross section of the ground state of Al2+. We include both the direct ionization of the 3s and 2p subshells and the indirect ionization from the 2p subshell. This calculation, thus, includes extra decay channels for the indirect-ionization process not included in previous RMPS calculations. This lowers the total-ionization cross section, resulting in closer agreement with the most recent experimental measurements. This calculation also shows better agreement with the position and height of the resonant-excitation double autoionization features seen in the experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-dependent close-coupling (TDCC), R-matrix-with-pseudostates (RMPS), and time-independent distorted-wave (TIDW) methods are used to calculate electron-impact ionization cross sections for the carbon atom. The TDCC and RMPS results for the 1s22s22p2 ground configuration are in reasonable agreement with the available experimental measurements, while the TIDW results are 30% higher. Ionization of the 1s22s2p3 excited configuration is performed using the TDCC, RMPS, and TIDW methods. Ionization of the 1s22s22p3l (l=0–2) excited configurations is performed using the TDCC and TIDW methods. The ionization cross sections for the excited configurations are much larger than for the ground state. For example, the peak cross section for the 1s22s22p3p excited configuration is an order of magnitude larger than the peak cross section for the 1s22s22p2 ground configuration. The TDCC results are again found to be substantially lower than the TIDW results. The ionization cross-section results will permit the generation of more accurate, generalized collisional-radiative ionization coefficients needed for modeling moderately dense carbon plasmas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evaluating the ratio of selected helium lines allows for measurement of electron densities and temperatures. This technique is applied for L-mode plasmas at TEXTOR (O. Schmitz et al., Plasma Phys. Control. Fusion 50 (2008) 115004). We report our first efforts to extend it to H-mode plasma diagnostics in DIII-D. This technique depends on the accuracy of the atomic data used in the collisional radiative model (CRM). We present predictions for the electron temperatures and densities by using recently calculated R-Matrix With Pseudostates (RMPS) and Convergent Close-Coupling (CCC) electron-impact excitation and ionization data. We include contributions from higher Rydberg states by means of the projection matrix. These effects become significant for high electron density conditions, which are typical in H-mode. We apply a non-equilibrium model for the time propagation of the ionization balance to predict line emission profiles from experimental H-mode data from DIII-D. © 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present complete collisional-radiative modelling results for the soft x-ray emission lines of Fe16+ in the 15 Å–17 Å range. These lines have been the subject of much controversy in the astrophysical and laboratory plasma community. Radiative transition rates are generated from fully relativistic atomic structure calculations. Electron-impact excitation cross sections are determined using a fully relativistic R-matrix method employing 139 coupled atomic levels through n = 5. We find that, in all cases, using a simple ratio of the collisional rate coefficient times a radiative branching factor is not sufficient to model the widely used diagnostic line ratios. One has to include the effects of collisional-radiative cascades in a population model to achieve accurate line ratios. Our line ratio results agree well with several previous calculations and reasonably well with tokamak experimental measurements, assuming a Maxwellian electron-energy distribution. Our modelling results for four EBIT line ratios, assuming a narrow Gaussian electron-energy distribution, are in generally poor agreement with all four NIST measurements but are in better agreement with the two LLNL measurements. These results suggest the need for an investigation of the theoretical polarization calculations that are required to interpret the EBIT line ratio measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron-impact ionization cross sections for argon are calculated using both non-perturbative R-matrix with pseudo-states (RMPS) and perturbative distorted-wave methods. At twice the ionization potential, the 3p(61)S ground-term cross section from a distorted-wave calculation is found to be a factor of 4 above crossed-beams experimental measurements, while with the inclusion of term-dependent continuum effects in the distorted-wave method, the perturbative cross section still remains almost a factor of 2 above experiment. In the case of ionization from the metastable 3p(5)4s(3)P term, the distorted-wave ionization cross section is also higher than the experimental cross section. On the other hand, the ground-term cross section determined from a nonperturbative RMPS calculation that includes 27 LS spectroscopic terms and another 282 LS pseudo-state terms to represent the high Rydberg states, and the target continuum is found to be in excellent agreement with experimental measurements, while the RMPS result is below the experimental cross section for ionization from the metastable term. We conclude that both continuum term dependence and interchannel coupling effects, which are included in the RMPS method, are important for ionization from the ground term, and interchannel coupling is also significant for ionization from the metastable term

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: Emission from Ar III is seen in planetary nebulae, in H II regions, and from laboratory plasmas. The analysis of such spectra requires accurate electron impact excitation data. Aims: The aim of this work is to improve the electron impact excitation data available for Ar2+, for application in studies of planetary nebulae and laboratory plasma spectra. The effects of the new data on diagnostic line ratios are also studied. Methods: Electron-impact excitation collision strengths have been calculated using the R-Matrix Intermediate-Coupling Frame-Transformation method and the R-Matrix Breit-Pauli method. Excitation cross sections are calculated between all levels of the configurations 3s^23p^4, 3s3p^5, 3p^6, 3p^53d, and 3s^23p^3nl (3d ≤ nl ≤ 5s). Maxwellian effective collision strengths are generated from the collision strength data. Results: Good agreement is found in the collision strengths calculated using the two R-Matrix methods. The collision strengths are compared with literature values for transitions within the 3s^23p4 configuration. The new data has a small effect on Te values obtained from the I(λ7135 Å+ λ7751 Å)/ I(λ5192 Å) line ratio, and a larger effect on the Ne values obtained from the I(λ7135 Å)/I(λ9 μm) line ratio. The final effective collision strength data is archived online.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate knowledge of the electron-impact ionization of the B atom is urgently needed in current fusion plasma experiments to help design ITER wall components. Since no atomic measurements exist, nonperturba- tive time-dependent close-coupling (TDCC) calculations are carried out to accurately determine the direct ionization cross sections of the outer two subshells of B. Perturbative distorted-wave and semiempirical binary encounter calculations are found to yield cross sections from 26% lower to an order of magnitude higher than the current TDCC results. Unlike almost all neutral atoms, large excitation-autoionization contributions are found for the B atom. Nonperturbative R matrix with pseudostates (RMPS) calculations are also carried out to accurately determine the total ionization cross section of B. Previous 60 LS-term RMPS calculations are found to yield cross sections up to 40% higher than the current more extensive 476 LS-term RMPS results

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron-impact ionization and recombination cross sections and rate coefficients are calculated for M-shell Ar atomic ions using a configuration-average distorted-wave method. The electron-impact ionization calcula- tions are for all atomic ions in the Ar isonuclear sequence. Ionization contributions include both direct ioniza- tion and excitation-autoionization processes. Good agreement is found between theory and experimental crossed-beam measurements for moderately charged ion stages. Comparisons are made with previous theoret- ical calculations where possible.We also generate rate coefficients for neutral argon ionization, based on recent R-matrix with pseudostates calculations. Electron-impact dielectronic recombination is calculated for all M-shell ions of argon. For Ar6+ and Ar7+ the current theoretical results agree well with previous level-resolved distorted-wave calculations. In order to compare with published ionization balance results our dielectronic recombination data are combined with literature values for the higher ion stages and with recent radiative recombination data for all the ion stages. We find significant differences in our equilibrium fractional abun- dances for the M-shell ions, compared with literature values. We relate these differences to the underlying atomic data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron-impact excitation collision strengths for transitions between all singly excited levels up to the n = 4 shell of helium-Eke argon and the n = 4 and 5 shells of helium-like iron have been calculated using a radiation-damped R-matrix approach. The theoretical collision strengths have been examined and associated with their infinite-energy limit values to allow the preparation of Maxwell-averaged effective collision strengths. These are conservatively considered to be accurate to within 20% at all temperatures, 3 x 10(5)-3 x 10(8) K forAr(16+) and 10(6)-10(9) K for Fe24+. They have been compared with the results of previous studies, where possible, and we find a broad accord. The corresponding rate coefficients are required for use in the calculation of derived, collisional-radiative, effective emission coefficients for helium-like lines for diagnostic application to fusion and astrophysical plasmas. The uncertainties in the fundamental collision data have been used to provide a critical assessment of the expected resultant uncertainties in such derived data, including redistributive and cascade collisional-radiative effects. The consequential uncertainties in the parts of the effective emission coefficients driven by excitation from the ground levels for the key w, x, y and z lines vary between 5% and 10%. Our results remove an uncertainty in the reaction rates of a key class of atomic processes governing the spectral emission of helium-like ions in plasmas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent atomic physics calculations for Si II are employed within the CLOUDY modelling code to analyse Hubble Space Telescope (HST) STIS ultraviolet spectra of three cool stars, β Geminorum, α Centauri A and B, as well as previously published HST/GHRS observations of α Tau, plus solar quiet Sun data from the High Resolution Telescope and Spectrograph. Discrepancies found previously between theory and observation for line intensity ratios involving the 3s23p 2PJ-3s3p2 4PJ' intercombination multiplet of Si II at ~ 2335 Å are significantly reduced, as are those for ratios containing the 3s23p 2PJ-3s3p2 2DJ ~ transitions at ~1816 Å. This is primarily due to the effect of the new Si II transition probabilities. However, these atomic data are not only very different from previous calculations, but also show large disagreements with measurements, specifically those of Calamai et al. for the intercombination lines. New measurements of transition probabilities for Si II are hence urgently required to confirm (or otherwise) the accuracy of the recently calculated values. If the new calculations are confirmed, then a long-standing discrepancy between theory and observation will have finally been resolved. However, if the older measurements are found to be correct, then the agreement between theory and observation is simply a coincidence and the existing discrepancies remain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

R-matrix calculations of electron impact excitation rates in N-like Mg VI are used to derive theoretical electron-density-sensitive emission line ratios involving 2s22p3 - 2s2p4 transitions in the 269-403 Å wavelength range. A comparison of these with observations of a solar active region, obtained during the 1989 flight of the Solar EUV Rocket Telescope and Spectrograph (SERTS), reveals good agreement between theory and observation for the 2s22p3 4S - 2s2p 4 4p transitions at 399.28, 400.67, and 403.30 Å, and the 2s22p3 2p - 2s2p4 2D lines at 387.77 and 387.97 Å. However, intensities for the other lines attributed to Mg VI in this spectrum by various authors do not match the present theoretical predictions. We argue that these discrepancies are not due to errors in the adopted atomic data, as previously suggested, but rather to observational uncertainties or mis-identifications. Some of the features previously identified as Mg VI lines in the SERTS spectrum, such as 291.36 and 293.15 Å, are judged to be noise, while others (including 349.16 Å) appear to be blended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes at the La Silla Paranal Observatory under programme ID 085.D-0501(A).