202 resultados para colonic drug delivery
Resumo:
Gold nanoparticles are emerging as promising agents for cancer therapy and are being investigated as vehicles for drug delivery, agents for photothermal therapy, image contrast and radiosensitisation. This review introduces the field of nanotechnology with a focus on recent gold nanoparticle research which has led to early phase clinical trials. In particular the increasing preclinical evidence for gold nanoparticles as sensitizers with ionizing radiation in vitro and in vivo is discussed.
Resumo:
Photodynamic therapy involves delivery of a photosensitising drug that is activated by light of a specific wavelength, resulting in generation of highly reactive radicals. This activated species can cause destruction of targeted cells. Application of this process for treatment of microbial infections has been termed "photodynamic antimicrobial chemotherapy" (PACT). In the treatment of chronic wounds, the delivery of photosensitising agents is often impeded by the presence of a thick hyperkeratotic/necrotic tissue layer, reducing their therapeutic efficacy. Microneedles (MNs) are an emerging drug delivery technology that have been demonstrated to successfully penetrate the outer layers of the skin, whilst minimising damage to skin barrier function. Delivering photosensitising drugs using this platform has been demonstrated to have several advantages over conventional photodynamic therapy, such as, painless application, reduced erythema, enhanced cosmetic results and improved intradermal delivery. The aim of this study was to physically characterise dissolving MNs loaded with the photosensitising agent, methylene blue and assess their photodynamic antimicrobial activity. Dissolving MNs were fabricated from aqueous blends of Gantrez(®) AN-139 co-polymer containing varying loadings of methylene blue. A height reduction of 29.8% was observed for MNs prepared from blends containing 0.5% w/w methylene blue following application of a total force of 70.56 N/array. A previously validated insertion test was used to assess the effect of drug loading on MN insertion into a wound model. Staphylococcus aureus, Escherichia coli and Candida albicans biofilms were incubated with various methylene blue concentrations within the range delivered by MNs in vitro (0.1-2.5 mg/mL) and either irradiated at 635 nm using a Paterson Lamp or subjected to a dark period. Microbial susceptibility to PACT was determined by assessing the total viable count. Kill rates of >96%, were achieved for S. aureus and >99% for E. coli and C. albicans with the combination of PACT and methylene blue concentrations between 0.1 and 2.5 mg/mL. A reduction in the colony count was also observed when incorporating the photosensitiser without irradiation, this reduction was more notable in S. aureus and E. coli strains than in C. albicans.
Resumo:
Prostate cancer (CaP) is the most commonly diagnosed cancer in males. There have been dramatic technical advances in radiotherapy delivery, enabling higher doses of radiotherapy to primary cancer, involved lymph nodes and oligometastases with acceptable normal tissue toxicity. Despite this, many patients relapse following primary radical therapy, and novel treatment approaches are required. Metal nanoparticles are agents that promise to improve diagnostic imaging and image-guided radiotherapy and to selectively enhance radiotherapy effectiveness in CaP. We summarize current radiotherapy treatment approaches for CaP and consider pre-clinical and clinical evidence for metal nanoparticles in this condition.
Prostate cancer (CaP) is the most commonly diagnosed cancer in males and is responsible for more than 10,000 deaths each year in the UK.1 Technical advances in radiotherapy delivery, including image-guided intensity-modulated radiotherapy (IG-IMRT), have enabled the delivery of higher radiation dose to the prostate, which has led to improved biochemical control. Further improvements in cancer imaging during radiotherapy are being developed with the advent of MRI simulators and MRI linear accelerators.2–4
Nanotechnology promises to deliver significant advancements across numerous disciplines.5 The widest scope of applications are from the biomedical field including exogenous gene/drug delivery systems, advanced biosensors, targeted contrast agents for diagnostic applications and as direct therapeutic agents used in combination with existing treatment modalities.6–11 This diversity of application is especially evident within cancer research, with a myriad of experimental anticancer strategies currently under investigation.
This review will focus specifically on the potential of metal-based nanoparticles to augment the efficacy of radiotherapy in CaP, a disease where radiotherapy constitutes a major curative treatment modality.12 Furthermore, we will also address the clinical state of the art for CaP radiotherapy and consider how these treatments could be best combined with nanotherapeutics to improve cancer outcomes.
Resumo:
Administration of biomacromolecular drugs in effective quantities from conventional vaginal rings is hampered by poor drug permeability in the polymers from which rings are commonly constructed. Here, we report the formulation development and testing of rod insert rings for sustained release of the candidate antiretroviral peptides T-1249 and JNJ54310516-AFP (JNJ peptide), both of which have potential as HIV microbicides. Rod inserts were prepared comprising antiviral peptides T-1249 or JNJ peptide in combination with a hydrophilic excipient (sodium chloride, sodium glutamate, lactose or zinc acetate) dispersed at different loadings within a medical grade silicone elastomer. The inserts were tested for weight change and swelling when immersed in simulated vaginal fluid (SVF). Dye migration into the inserts was also assessed visually over 28 days. In vitro release of T-1249 and JNJ peptide from rings containing various insert types was tested. Weight change and degree of swelling of rods immersed in SVF was dependent on the type and concentration of excipient present. The rods displayed the following rank order in terms of weight change: sodium glutamate > zinc acetate ≈ sodium chloride > lactose. The weight change and degree of swelling of the inserts did not correlate with the level of dye uptake observed. In vitro release of T-1249 was improved through addition of lactose, sodium chloride and sodium glutamate, while release of JNJ peptide was improved through addition of sodium chloride or sodium glutamate. Sustained release of hydrophobic peptides can be achieved using a rod insert ring design formulated to include a hydrophilic excipient. Release rates were dependent upon the type of excipient used. The degree of release improvement with different inserts partially reflects their ability to imbibe surrounding fluid and swell in aqueous environments.
Resumo:
Vaginal rings (VRs) are flexible, torus-shaped, polymeric devices designed to sustain delivery of pharmaceutical drugs to the vagina for clinical benefit. Following first report in a 1970 patent application, several steroid-releasing VR products have since been marketed for use in hormone replacement therapy and contraception. Since 2002, there has been growing interest in the use of VR technology for delivery of drugs that can reduce the risk of sexual acquisition of human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS). Although no vaginally-administered product has yet been approved for HIV reduction/prevention, extensive research efforts are continuing and a number of VR devices offering sustained release of so-called ‘HIV microbicide’ compounds are currently being evaluated in late-stage clinical studies. This review article provides an overview of the published scientific literature within this important field of research, focusing primarily on articles published within peer-reviewed journal publications. Many important aspects of microbicide-releasing VR technology are discussed, with a particular emphasis on the technological, manufacturing and clinical challenges that have emerged in recent years.
Resumo:
Microneedles (MNs) are minimally invasive devices consisting of numerous micron-sized projections amassed on a baseplate, designed to enhance transdermal drug delivery. When applied to the skin, the needles puncture the outermost layer, the stratum corneum, forming aqueous conduits through which drugs can diffuse to the dermal microcirculation. With an average length of 50-900 μm, MNs are short enough to avoid stimulation of dermal nerves and do not induce bleeding, yet gain access to the skin's rich microcirculation for drug delivery. MNs have been extensively investigated for drug and vaccine delivery, demonstrating their efficacy at increasing the number of compounds amenable to delivery through the skin. This chapter discusses the materials and fabrication methods involved in MN production, alongside the different types of MN arrays and their delivery capabilities. The field has expanded to consider novel applications of MNs including minimally invasive patient monitoring, ocular delivery and enhanced administration of cosmeceuticals. Patient usage and effects on the skin are also considered in terms of safety, efficacy and acceptability. The next steps in MN development are to focus on the scale-up of manufacturing processes, a challenge considering the number of small-scale methods detailed in the literature. Regulatory guidance is awaited to direct this, alongside provision of clearer patient instruction for safe and effective use of MN devices. MNs have tremendous potential to yield real benefits for patients and industry and with continued research in the key areas highlighted, this will begin to be realised over the next number of years.