215 resultados para arsenic interstitial couples
Resumo:
Biogeochemical relationships and the level of arsenic (As) contamination of groundwater and surface sediments in the Haor Basin of Bangladesh were assessed to see if surface sediments gave any indication of underlying As cycling. The Haor areas under study have been found to be affected with high As (up to 331 μg/L) in groundwater, with contamination of both shallow and deep aquifers. Highly significant relationships of As with Dissolved Organic Carbon (DOC) in groundwater and Total Carbon (TC) and Organic Carbon (OC) in sediments are indicative of reductive dissolution of iron (Fe) and/or manganese (Mn) oxides/oxyhydroxides coupled with biodegradation of organic matter as the dominant processes to release As in groundwater. This study also reveals that As geochemistry in the surface sediments has limited influence on As geochemistry in the groundwater of the Haor Basins. © 2012 Taylor & Francis Group.
Resumo:
Environmental context Seaweeds hyperaccumulate the toxic metalloid arsenic, but seemingly achieve detoxification by transformation to arsenosugars. The edible seaweed hijiki is a notable exception because it contains high levels of toxic arsenate and arsenite. Terrestrial plants detoxify arsenic by forming arsenitephytochelatin complexes. The hypothesis that seaweeds also synthesise phytochelatins to bind arsenite as a means of detoxification before arsenosugar synthesis is tested in this investigation. Abstract Phytochelatins (PCs), generic structure [-Glu-Cys]n-Gly, are peptides synthesised by terrestrial plants to bind toxic metal(loid)s such as cadmium and arsenic. Seaweeds are arsenic hyperaccumulators, seemingly achieving detoxification via arsenosugar biosynthesis. Whether seaweeds synthesise PCs to aid detoxification during arsenic exposure is unknown. Hizikia fusiforme (hijiki) and Fucus spiralis were used as model seaweeds: the former is known for its large inorganic arsenic concentration, whereas the latter contains mainly arsenosugars. F. spiralis was exposed to 0, 1 and 10mgL -1 arsenate solutions for 24h, whereas hijiki was analysed fresh. All samples contained As III, glutathione and reduced PC 2, identified using HPLC-ICP-MS/ES-MS. Although hijiki contained no As IIIPC complexes, arsenate exposed F. spiralis generated traces of numerous arsenic compounds that might be As IIIGS or As IIIPC 2 complexes. As IIIPC complexes seem not to be a principal storage form for long-term arsenic storage within seaweeds. However, 40 times higher glutathione concentrations were found in hijiki than F. spiralis, which may explain how hijiki deals with its high inorganic arsenic burden. © 2011 CSIRO.
Resumo:
The use of geothermal energy as a source for electricity and district heating has increased over recent decades. Dissolved As can be an important constituent of the geothermal fluids brought to the Earth's surface. Here the field application of laboratory measured adsorption coefficients of aqueous As species on basaltic glass surfaces is discussed. The mobility of As species in the basaltic aquifer in the Nesjavellir geothermal system, Iceland was modelled by the one-dimensional (1D) reactive transport model PHREEQC ver. 2, constrained by a long time series of field measurements with the chemical composition of geothermal effluent fluids, pH, Eh and, occasionally, Fe- and As-dissolved species measurements. Di-, tri- and tetrathioarsenic species (As(OH)S22-, AsS3H2-, AsS33- and As(SH)4-) were the dominant form of dissolved As in geothermal waters exiting the power plant (2.556μM total As) but converted to some extent to arsenite (H3AsO3) and arsenate HAsO42- oxyanions coinciding with rapid oxidation of S2- to S2O32- and finally to SO42- during surface runoff before feeding into a basaltic lava field with a total As concentration of 0.882μM following dilution with other surface waters. A continuous 25-a data set monitoring groundwater chemistry along a cross section of warm springs on the Lake Thingvallavatn shoreline allowed calibration of the 1D model. Furthermore, a series of ground water wells located in the basaltic lava field, provided access along the line of flow of the geothermal effluent waters towards the lake. The conservative ion Cl- moved through the basaltic lava field (4100m) in less than10a but As was retarded considerably due to surface reactions and has entered a groundwater well 850m down the flow path as arsenate in accordance to the prediction of the 1D model. The 1D model predicted a complete breakthrough of arsenate in the year 2100. In a reduced system arsenite should be retained for about 1ka. © 2011 Elsevier Ltd.
Resumo:
Arsenic (As) uptake and distribution in the roots, shoots, and grain of wheat (Triticum durum) grown in 2 As polluted soils (192 and 304 mg kg -1 respectively), and an uncontaminated soil (14 mg kg-1 ), collected from Scarlino plain (Tuscany, Italy), was investigated with respect with phosphorus fertilization. Three different level of phosphorus (P) fertilization: PO [0 kg ha-1], Pl [75 kg ha-1], and P2 [150 kg ha-1], as KH2PO4 of P, were applied. The presence of high concentrations of As in soils reduced plants growth, decreased grain yield and increased root, shoot and grain As concentrations, especially in the absence of P fertilization. The P fertilization decreased the As concentration in all the tissues as well as the translocation of As to the shoot and grain. This observation may be useful in certain areas of the world with high levels of As in soils, to reduce the potential risk posed to human health by As entering the food-chain. © by PSP.
Resumo:
Research into the composition of cereal grains is motivated by increased interest in food quality. Here multi-element analysis is conducted on leaves and grain of the Bala x Azucena rice mapping population grown in the field. Quantitative trait loci (QTLs) for the concentration of 17 elements were detected, revealing 36 QTLs for leaves and 41 for grains. Epistasis was detected for most elements. There was very little correlation between leaf and grain element concentrations. For selenium, lead, phosphorus and magnesium QTLs were detected in the same location for both tissues. In general, there were no major QTL clusters, suggesting separate regulation of each element. QTLs for grain iron, zinc, molybdenum and selenium are potential targets for marker assisted selection to improve seed nutritional quality. An epistatic interaction for grain arsenic also looks promising to decrease the concentration of this carcinogenic element. © Springer Science+Business Media B.V. 2009.
Resumo:
In this study we have investigated the uptake and distribution of arsenic (As) and phosphate (Pi) in roots, shoots, and grain of wheat grown in an uncontaminated soil irrigated with solutions containing As at three different concentrations (0.5, 1 and 2 mg l-1) and in the presence or in the absence of P fertilization. Arsenic in irrigation water reduced plants growth and decreased grain yield. When Pi was not added (P-), plants were more greatly impacted compared to the plus Pi (P+) treatments. The differences in mean biomass between P- and P+ treatments at the higher As concentrations demonstrated the role of Pi in preventing As toxicity and growth inhibition. Arsenic concentrations in root, shoot and grain increased with increasing As concentration in irrigation water. It appears that P fertilization minimizes the translocation of As to the shoots and grain whilst enhancing P status of plant. The observation that P fertilization minimises the translocation of arsenic to the shoots and grain is interesting and may be useful for certain regions of the world that has high levels of As in groundwater or soils. © 2008 Springer Science+Business Media B.V.
Resumo:
A study was undertaken to determine the effects of different concentrations of arsenic (As) in irrigation water on Boro (dry-season) rice (Oryza sativa) and their residual effects on the following Aman (wet-season) rice. There were six treatments, with 0, 0.1, 0.25, 0.5, 1, and 2 mg As L-1 applied as disodium hydrogen arsenate. All the growth and yield parameters of Boro rice responded positively at lower concentrations of up to 0.25 mg As L-1 in irrigation water but decreased sharply at concentrations more than 0.5 mg As L-1. Arsenic concentrations in grain and straw of Boro rice increased significantly with increasing concentration of As in irrigation water. The grain As concentration was in the range of 0.25 to 0.97 μg g-1 and its concentration in rice straw varied from 2.4 to 9.6 μg g-1 over the treatments. Residual As from previous Boro rice showed a very similar pattern in the following Aman rice, although As concentration in Aman rice grain and straw over the treatments was almost half of the As levels in Boro rice grain. Arsenic concentrations in both grain and straw of Boro and Aman rice were found to correlate with iron and be antagonistic with phosphorus. Copyright © Taylor & Francis Group, LLC.
Resumo:
Complexes of arsenic compounds and glutathione are believed to play an essential part in the metabolism and transport of inorganic arsenic and its methylated species. Up to now, the evidence of their presence is mostly indirect. We studied the stability and Chromatographic behaviour of glutathione complexes with trivalent arsenic: i.e. AsIII(GS)3, MA III(GS)2 and DMAIII(GS) under different conditions. Standard ion chromatography using PRP X-100 and carbonate or formic acid buffer disintegrated the complexes, while all three complexes are stable and separable by reversed phase chromatography (0.1% formic acid/acetonitrile gradient). AsIII(GS)3 and MAIII(GS)2 were more stable than DMAIII(GS), which even under optimal conditions tended to degrade on the column at 25 °C. Chromatography at 6 °C can retain the integrity of the samples. These results shed more light on the interpretation of a vast number of previously published arsenic speciation studies, which have used Chromatographic separation techniques with the assumption that the integrity of the arsenic species is guaranteed. © The Royal Society of Chemistry 2004.
Resumo:
Sheep on the island of North Ronaldsay (Orkney, UK) feed mostly on seaweed, which contains high concentrations of dimethylated arsenoribosides. Wool of these sheep contains dimethylated, monomethylated and inorganic arsenic, in addition to unidentified arsenic species in unbound and complexed form. Chromatographic techniques using different separation mechanisms and detectors enabled us to identify five arsenic species in water extracts of wool. The wool contained 5.2 ± 2.3 μg arsenic per gram wool. About 80% of the arsenic in wool was extracted by boiling the wool with water. The main species is dimethylarsenic, which accounted for about 75 to 85%, monomethylated arsenic at about 5% and the rest is inorganic arsenic. Depending on the separation method and condition, the chromatographic recovery of arsenic species was between 45% for the anion exchange column, 68% for the size exclusion chromatography (SEC) and 82% for the cation exchange column. The SEC revealed the occurrence of two unknown arsenic compounds, of which one was probably a high molecular mass species. Since chromatographic recovery can be improved by either treating the extract with CuCl/HCl (CAT: 90%) or longer storage of the sample (CAT: 105%), in particular for methylated arsenic species, it can be assumed that labile arsenic -protein-like coordination species occur in the extract, which cannot be speciated with conventional chromatographic methods. It is clear from our study of sheep wool that there can be different kinds of 'hidden' arsenic in biological matrices, depending on the extraction, separation and detection methods used. Hidden species can be defined as species that are not recordable by the detection system, not extractable or do not elute from chromatographic columns. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
A range of fern species (45) and their allies, Equisetum (5) and Selaginella (2) species and Psilotum nudum were screened for their ability to hyperaccumulate arsenic, to develop a phylogenetic understanding of this phenomenon. A number of varieties (5) of a known arsenic hyperaccumulator Pteris cretica were additionally included in this study. This study is the first to report members of the Pteris genus that do not hyperaccumulate arsenic, Pteris straminea and tremula. A phylogenetic basis for arsenic accumulation in ferns was investigated. Some orders can accumulate more arsenic than others. Although members of the Equisetales and Blechnales did not hyperaccumulate arsenic, they still accumulated relatively high levels in their fronds, approaching 100 mg kg-1 when grown on a soil dosed with 100 mg kg-1 arsenic. Arsenic hyperaccumulation was identified as a phenomenon at the extreme range of fern arsenic accumulation. Ferns that exhibit arsenic hyperaccumulation arrived relatively late in terms of fern evolution, as this character is not exhibited by primitive ferns or their allies.
Resumo:
Lumbricus rubellus Hoffmeister, inhabiting soil at the 19th century Devon Great Consols mine at Tavistock, Devon, UK, show high tolerance to Cu- and As-toxicity and frequently have a striking yellow coloration. Specimens from this site (mature and immature) and from an uncontaminated site on Lancaster University campus (mature) were photographed, and the slide images digitized and analyzed. All L. rubellus showed reddish-purple pigmentation of the body wall that declined in intensity posteriorly. The metal- and metalloid-resistant earthworms, whether mature or immature, showed yellowing in the posterior half of the body. The source of the coloration was intense yellow pigmentation of the chloragogenous tissue surrounding the alimentary canal. The yellow pigmentation is masked by reddish-purple body wall pigmentation anteriorly. Total As concentrations in tissues were determined for the anterior, middle and posterior sections of resistant and non-resistant L. rubellus. Highest concentrations were in the middle sections of the mature and immature resistant L. rubellus (36.17 ± 19.77 and 27.77 ± 9.02 mg As kg-1, respectively). Resistant immature L. rubellus lost condition over 28 d in soil treated with 750 mg As kg-1, possibly due to a higher metabolism, whilst there was no loss in condition for resistant mature L. rubellus in the treated soil. As far as the authors are aware, this is the first report of yellow pigmentation of this kind in earthworms. The pigmentation may provide a useful indicator of exposure/resistance to soil contamination. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Long-term use of arsenic contaminated groundwater to irrigate crops, especially paddy rice (Oryza sativa L.) has resulted in elevated soil arsenic levels in Bangladesh. There is, therefore, concern regarding accumulation of arsenic in rice grown on these soils. A greenhouse pot experiment was conducted to evaluate the impact of arsenic-contaminated irrigation water on the growth and uptake of arsenic into rice grain, husk, straw and root. There were altogether 10 treatments which were a combination of five arsenate irrigation water concentrations (0-8 mg As l-1) and two soil phosphate amendments. Use of arsenate containing irrigation water reduced plant height, decreased rice yield and affected development of root growth. Arsenic concentrations in all plant parts increased with increasing arsenate concentration in irrigation water. However, arsenic concentration in rice grain did not exceed the maximum permissible limit of 1.0 mg As kg-1. Arsenic accumulation in rice straw at very high levels indicates that feeding cattle with such contaminated straw could be a direct threat for their health and also, indirectly, to human health via presumably contaminated bovine meat and milk. Phosphate application neither showed any significant difference in plant growth and development, nor in As concentrations in plant parts.