221 resultados para alkali activated slag concretes
Resumo:
Visible-light-activated yellow amorphous TiO2 (yam- TiO 2) was synthesised by a simple and organic-free precipitation method. TiN, an alternative precursor for TiO2 preparation, was dissolved in hydrogen peroxide under acidic condition (pH∼1) adjusted by nitric acid. The yellow precipitate was obtained after adjusting pH of the resultant red brown solution to 2 with NH4OH. The BET surface area of this sample was 261 m2/g. The visible light photoactivity was evaluated on the basis of the photobleaching of methylene blue (MB) in an aqueous solution by using a 250 W metal halide bulb equipped with UV cutoff filter (λ>420 nm) under aerobic conditions. Yam- TiO2 exhibits an interesting property of being both surface adsorbent and photoactive under visible light. It was assigned to the η2-peroxide, an active intermediate form of the addition of H2O2 into crystallined TiO2 photocatalyst. It can be concluded that an active intermediate form of titanium peroxo species in photocatalytic process can be synthesised and used as a visible-light-driven photocatalyst
Resumo:
Geopolymer binders are generally formed by reacting powdered aluminosilicate precursors with alkali silicate activators. Most research to date has concentrated on using either pulverised fuel ash or high purity dehydroxylated kaolin (metakaolin) in association with ground granulated blast furnace slag as the main precursor material. However, recently, attention has turned to alternative calcined clays that are abundant throughout the globe and have lower kaolinite contents than commercially available metakaolins. Due to the lack of clear and simple screening protocols enabling assessment of such geological resources for use as precursors in geopolymer systems, the present paper presents results from experimental work that was carried out to develop a functional binder using materials containing kaolinite taken from the Interbasaltic Formation of Northern Ireland. The influence of mineralogy has been examined, and a screening process, using three Interbasaltic materials as examples, that will assist in the rapid selection of suitable geopolymeric precursors from such materials is outlined.