298 resultados para Simpson, Ron
A Comparison of the Flow Structures and Losses Within Vaned and Vaneless Stators for Radial Turbines
Resumo:
This paper details the numerical analysis of different vaned and vaneless radial inflow turbine stators. Selected results are presented from a test program carried out to determine performance differences between the radial turbines with vaned stators and vaneless volutes under the same operating conditions. A commercial computational fluid dynamics code was used to develop numerical models of each of the turbine configurations, which were validated using the experimental results. From the numerical models, areas of loss generation in the different stators were identified and compared, and the stator losses were quantified. Predictions showed the vaneless turbine stators to incur lower losses than the corresponding vaned stator at matching operating conditions, in line with the trends in measured performance.. Flow conditions at rotor inlet were studied and validated with internal static pressure measurements so as to judge the levels of circumferential nonuniformity for each stator design. In each case, the vaneless volutes were found to deliver a higher level of uniformity in the rotor inlet pressure field. [DOI: 10.1115/1.2988493]
Resumo:
Computational fluid dynamic modelling was carried out on a series of pipe bends having R/r values of 1.3, 5, and 20, with the purpose of determining the accuracy of numerical models in predicting pressure loss data from which to inform one-dimensional loss models. Four separate turbulence models were studied: the standard k-epsilon model, realizable k-epsilon model, k-omega model, and a Reynolds stress model (RSM). The results are presented for each bend in the form of upstream and downstream pressure profiles, pressure distributions along the inner and outer walls, detailed pressure and velocity fields as well as overall loss values. In each case, measured data were presented to evaluate the predictive ability of each model. The RSM was found to perform the best, producing accurate pressure loss data for bends with R/r values of 5 and 20. For the tightest bend with an R/r value of 1.3, however, predictions were significantly worse due to the presence of flow separation, stronger pressure gradients, and high streamline curvature.
Resumo:
1. Mounting an immune response is likely to be costly in terms of energy and nutrients, and so it is predicted that dietary intake should change in response to infection to offset these costs. The present study focuses on the interactions between a specialist grass-feeding caterpillar species, the African armyworm Spodoptera exempta, and an opportunist bacterium, Bacillus subtilis.
2. The main aims of the study were (i) to establish the macronutrient costs to the insect host of surviving a systemic bacterial infection, (ii) to determine the relative importance of dietary protein and carbohydrate to immune system functions, and (iii) to determine whether there is an adaptive change in the host's normal feeding behaviour in response to bacterial challenge, such that the nutritional costs of resisting infection are offset.
3. We show that the survival of bacterially infected larvae increased with increasing dietary protein-to-carbohydrate (P:C) ratio, suggesting a protein cost associated with bacterial resistance. As dietary protein levels increased, there was an increase in antibacterial activity, phenoloxidase (PO) activity and protein levels in the haemolymph, providing a potential source for this protein cost. However, there was also evidence for a physiological trade-off between antibacterial activity and phenoloxidase activity, as larvae whose antibacterial activity levels were elevated in response to immune activation had reduced PO activity.
4. When given a choice between two diets varying in their P:C ratios, larvae injected with a sub-lethal dose of bacteria increased their protein intake relative to control larvae whilst maintaining similar carbohydrate intake levels. These results are consistent with the notion that S. exempta larvae alter their feeding behaviour in response to bacterial infection in a manner that is likely to enhance the levels of protein available for producing the immune system components and other factors required to resist bacterial infections (‘self-medication’).
Resumo:
1. Diet and health are intimately linked and recent studies have found that caloric restriction can affect immune function. However, when given a choice between diets that differ in their macronutrient composition, pathogen-infected individuals can select a diet that improves their survival, suggesting that the nutritional composition of the diet, as well as its calorie content, can play a role in defence against disease. Moreover, as individuals change their diet when infected, it suggests that a diet that is optimal for growth is not optimal for immunity, leading to trade-offs.
2. Currently, our knowledge of the effects of diet on immunity is limited because previous experiments have manipulated either single nutrients or the calorie content of the diet without considering their interactive effects. By simultaneously manipulating both the diet composition (quality) and its caloric density (quantity), in both naive and immune-challenged insects, we asked how do diet quality and quantity influence an individual's ability to mount an immune response? And to what extent are allocation trade-offs driven by quantity- versus quality-based constraints?
3. We restricted individuals to 20 diets varying in their protein and carbohydrate content and used 3D response surfaces to visualize dietary effects on larval growth and immune traits. Our results show that both constitutive and induced immune responses are not limited by the total quantity of nutrients consumed, but rather different traits respond differently to variation in the ratios of macronutrients (diet quality), and peak in different regions of macronutrient space. The preferred dietary composition therefore represents a compromise between the nutritional requirements of growth and immune responses. We also show that a non-pathogenic immune challenge does not affect diet choice, rather immune-challenged insects modify their allocation of nutrients to improve their immune response.
4. Our results indicate that immune traits are affected by the macronutrient content of the diet and that no diet can simultaneously optimize all components of the immune system. To date the emphasis has been on the effects of micronutrients in improving immunity, our findings indicate that this must be widened to include the neglected impact of macronutrients on defence against disease.
Resumo:
Label-free plasmonic biosensors rely either on surface plasmon polaritons or on localized surface plasmons on continuous or nanostructured noble-metal surfaces to detect molecular-binding events(1-4). Despite undisputed advantages, including spectral tunability(3), strong enhancement of the local electric field(5,6) and much better adaptability to modern nanobiotechnology architectures(7), localized plasmons demonstrate orders of magnitude lower sensitivity compared with their guided counterparts(3). Here, we demonstrate an improvement in biosensing technology using a plasmonic metamaterial that is capable of supporting a guided mode in a porous nanorod layer. Benefiting from a substantial overlap between the probing field and the active biological substance incorporated between the nanorods and a strong plasmon-mediated energy confinement inside the layer, this metamaterial provides an enhanced sensitivity to refractive-index variations of the medium between the rods (more than 30,000nm per refractive-index unit). We demonstrate the feasibility of our approach using a standard streptavidin-biotin affinity model and record considerable improvement in the detection limit of small analytes compared with conventional label-free plasmonic devices.
Resumo:
We analyze the optical properties of plasmonic nanorod metamaterials in the epsilon-near-zero regime and show, both theoretically and experimentally, that the performance of these composites is strongly affected by nonlocal response of the effective permittivity tensor. We provide the evidence of interference between main and additional waves propagating in the room-temperature nanorod metamaterials and develop an analytical description of this phenomenon. Additional waves are present in the majority of low-loss epsilon-near-zero structures and should be explicitly considered when designing applications of epsilon-near-zero composites, as they represent a separate communication channel.
Resumo:
It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-aligned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disc, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disc was well-aligned with the host star. Recent work by Lai et al. has challenged this assumption, and proposes that the star-disc interaction in the pre-main sequence phase can exert a torque on the star and change its rotation axis angle. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris disks. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disk inclinations shows no evidence for a misalignment between the two.