198 resultados para PREJUDICE-REDUCTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cuttings in heavily overconsolidated clays are known to be susceptible to progressive deformation caused by creep and fatigue that usually begins at the toe of the slope. The progressive deformation leads to strength reduction with time at constant stress (or called softening) and could be accelerated by fluctuation of groundwater level associated with more extreme rainfall events predicted through climate change. The purpose of this paper is to assess the mechanism of progressive deformation due to creep and fatigue using element testing on samples of till. The samples were subjected to fully drained loading and the deviator stresses were held constant at various percentages of peak failure stress, while the pore water pressure was kept static or dynamic (fluctuating ±5 kPa) over a period of time. The results have shown that the samples experienced significant deformation even at a higher factor of safety (i.e. the failure deviator stress/deviator stress at which the pore water pressure was fluctuated) under pore water pressure dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective catalytic reduction (SCR) of NOx in the presence of different reducing agents over Ag/Al2O3 prepared by wet impregnation was investigated by probing catalyst activity and using NMR relaxation time analysis to probe the strength of surface interaction of the various reducing agent species and water. The results reveal that the strength of surface interaction of the reducing agent relative to water, the latter present in engine exhausts as a fuel combustion product and, in addition, produced during the SCR reaction, plays an important role in determining catalyst performance. Reducing agents with weak strength of interaction with the catalyst surface, such as hydrocarbons, show poorer catalytic performance than reducing agents with a higher strength of interaction, such as alcohols. This is attributed to the greater ability of oxygenated species to compete with water in terms of surface interaction with the catalyst surface, hence reducing the inhibiting effect of water molecules blocking catalyst sites. The results support the observations of earlier work in that the light off-temperature and maximum NOx conversion and temperature at which that occurs are sensitive to the reducing agent present during reaction, and the proposal that improved catalyst performance is caused by increased adsorption strength of the reducing agent, relative to water, at the catalyst surface. Importantly, the NMR relaxation time analysis approach to characterising the strength of adsorption more readily describes the trends in catalytic behaviour than does a straightforward consideration of the polarity (i.e., relative permittivity) of the reducing agents studied here. In summary, this paper describes a simple approach to characterising the interaction energy of water and reducing agent so as to aid the selection of reducing agent and catalyst to be used in SCR conversions.