268 resultados para Neural stimulation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal initiation by engagement of the TCR triggers actin rearrangements, receptor clustering, and dynamic organization of signaling complexes to elicit and sustain downstream signaling. Nef, a pathogenicity factor of HIV, disrupts early TCR signaling in target T cells. To define the mechanism underlying this Nef-mediated signal disruption, we employed quantitative single-cell microscopy following surface-mediated TCR stimulation that allows for dynamic visualization of distinct signaling complexes as microclusters (MCs). Despite marked inhibition of actin remodeling and cell spreading, the induction of MCs containing TCR-CD3 or ZAP70 was not affected significantly by Nef. However, Nef potently inhibited the subsequent formation of MCs positive for the signaling adaptor Src homology-2 domain-containing leukocyte protein of 76 kDa (SLP-76) to reduce MC density in Nef-expressing and HIV-1-infected T cells. Further analyses suggested that Nef prevents formation of SLP-76 MCs at the level of the upstream adaptor protein, linker of activated T cells (LAT), that couples ZAP70 to SLP-76. Nef did not disrupt pre-existing MCs positive for LAT. However, the presence of the viral protein prevented de novo recruitment of active LAT into MCs due to retargeting of LAT to an intracellular compartment. These modulations in MC formation and composition depended on Nef's ability to simultaneously disrupt both actin remodeling and subcellular localization of TCR-proximal machinery. Nef thus employs a dual mechanism to disturb early TCR signaling by limiting the communication between LAT and SLP-76 and preventing the dynamic formation of SLP-76-signaling MCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to gain further insight into the role that central dopaminergic pathways play in GH neuroregulation in man. Our experimental hypothesis was based on the possibility that most of the controversies on DA role could be due to the fact that the hypothalamic somatotroph rhythm (HSR) was not taken into account when interpreting the GH responses after pharmacological manipulations on dopaminergic pathways. In 10 normal subjects we monitored the effect of central dopaminergic blockade, achieved with metoclopramide (MCP; 10 mg, i.v. Bolus), on the pattern of spontaneous GH secretion and the GH responses to a GHRH challenge (GRF , 1 µg/kg, i.v. bolus) administered together with MCP or 60 min after this drug was given. The study of HSR was made according to our previous postulate. Our results indicate that MCP administration, either prior to or together with the GHRH bolus, significantly increased GHRH-induced GH release during a refractory HSR phase; but not when the GHRH challenge took place during a spotaneous secretory phase. The strong relationship between pre-GHRH plasma GH values and GHRH-elicited GH peaks was lost when MCP was given. These data indicate that MCP was able to disrupt the intrinsic HSR by inhibiting the hypothalamic release of somatostain (SS). While a main conclusion would be that central DA is a secretagogue for SS secretion, our results also suggest that this role could be dependent on its effects on the adrenergic inputs to SS neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manual interception, such as catching or hitting an approaching ball, requires the hand to contact a moving object at the right location and at the right time. Many studies have examined the neural mechanisms underlying the spatial aspects of goal-directed reaching, but the neural basis of the spatial and temporal aspects of manual interception are largely unknown. Here, we used repetitive transcranial magnetic stimulation (rTMS) to investigate the role of the human middle temporal visual motion area (MT+/V5) and superior parieto-occipital cortex (SPOC) in the spatial and temporal control of manual interception. Participants were required to reach-to-intercept a downward moving visual target that followed an unpredictably curved trajectory, presented on a screen in the vertical plane. We found that rTMS to MT+/V5 influenced interceptive timing and positioning, whereas rTMS to SPOC only tended to increase the spatial variance in reach end points for selected target trajectories. These findings are consistent with theories arguing that distinct neural mechanisms contribute to spatial, temporal, and spatiotemporal control of manual interception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we examined the possible utility of a three-dimensional culture system using a thermo-reversible gelation polymer to isolate and expand neural stem cells (NSCs). The polymer is a synthetic biologically inert polymer and gelates at temperatures higher than the gel-sol transition point ( approximately 20 degrees C). When fetal mouse brain cells were inoculated into the gel, spherical colonies were formed ( approximately 1% in primary culture and approximately 9% in passage cultures). The spheroid-forming cells were positive for expression of the NSC markers nestin and Musashi. Under conditions facilitating spontaneous neural differentiation, the spheroid-forming cells expressed genes characteristic to astrocytes, oligodendrocytes, and neurons. The cells could be successively propagated at least to 80 poly-D-lysines over a period of 20 weeks in the gel culture with a growth rate higher than that observed in suspension culture. The spheroids formed by fetal mouse brain cells in the gel were shown to be of clonal origin. These results indicate that the spheroid culture system is a convenient and powerful tool for isolation and clonal expansion of NSCs in vitro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cross education is the process whereby training of one limb gives rise to enhancements in the performance of the opposite, untrained limb. Despite interest in this phenomenon having been sustained for more than a century, a comprehensive explanation of the mediating neural mechanisms remains elusive. With new evidence emerging that cross education may have therapeutic utility, the need to provide a principled evidential basis upon which to design interventions becomes ever more pressing. Generally, mechanistic accounts of cross education align with one of two explanatory frameworks. Models of the 'cross activation' variety encapsulate the observation that unilateral execution of a movement task gives rise to bilateral increases in corticospinal excitability. The related conjecture is that such distributed activity, when present during unilateral practice, leads to simultaneous adaptations in neural circuits that project to the muscles of the untrained limb, thus facilitating subsequent performance of the task. Alternatively, 'bilateral access' models entail that motor engrams formed during unilateral practise, may subsequently be utilised bilaterally - that is, by the neural circuitry that constitutes the control centres for movements of both limbs. At present there is a paucity of direct evidence that allows the corresponding neural processes to be delineated, or their relative contributions in different task contexts to be ascertained. In the current review we seek to synthesise and assimilate the fragmentary information that is available, including consideration of knowledge that has emerged as a result of technological advances in structural and functional brain imaging. An emphasis upon task dependency is maintained throughout, the conviction being that the neural mechanisms that mediate cross education may only be understood in this context. © 2013 Ruddy and Carson.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetes mellitus is an independent risk factor in the development of atherosclerosis. In this study we aimed to demonstrate whether there is an abnormal interaction between low-density lipoproteins from diabetic patients and human macrophages. We measured cholesteryl ester synthesis and cholesteryl ester accumulation in human monocyte-derived macrophages (obtained from non-diabetic donors) incubated with low density lipoproteins from Type 1 (insulin-dependent) diabetic patients in good or fair glycaemic control. Low density lipoproteins from the diabetic patients stimulated more cholesteryl ester synthesis than low density lipoproteins from non-diabetic control subjects (7.19 +/- 1.19 vs 6.11 +/- 0.94 nmol/mg cell protein/20 h, mean +/- SEM, p less than 0.05). The stimulation of cholesteryl ester synthesis by low density lipoproteins isolated from diabetic patients was paralleled by a significant increase in intracellular cholesteryl ester accumulation (p less than 0.02). There were no significant differences in the lipid composition of low density lipoproteins between the diabetic and control groups. Non-enzymatic glycosylation of low density lipoproteins was higher in the diabetic group (p less than 0.01) and correlated significantly with cholesteryl ester synthesis (r = 0.58). Similarly, low-density lipoproteins obtained from non-diabetic subjects and glycosylated in vitro stimulated more cholesteryl ester synthesis in macrophages than control low density lipoproteins. The increase in cholesteryl ester synthesis and accumulation by cells exposed to low density lipoproteins from diabetic patients seems to be mediated by an increased uptake of these lipoproteins by macrophages.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SMART (SensoriMotor Active Rehabilitation Training) Arm is a nonrobotic device designed to allow stroke survivors with severe paresis to practice reaching. It can be used with or without outcome-triggered electrical stimulation (OT-stim) to augment movement. The aim of this study was to evaluate the efficacy of SMART Arm training when used with or without OT-stim, in addition to usual care, as compared with usual care alone during inpatient rehabilitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian probabilistic analysis offers a new approach to characterize semantic representations by inferring the most likely feature structure directly from the patterns of brain activity. In this study, infinite latent feature models [1] are used to recover the semantic features that give rise to the brain activation vectors when people think about properties associated with 60 concrete concepts. The semantic features recovered by ILFM are consistent with the human ratings of the shelter, manipulation, and eating factors that were recovered by a previous factor analysis. Furthermore, different areas of the brain encode different perceptual and conceptual features. This neurally-inspired semantic representation is consistent with some existing conjectures regarding the role of different brain areas in processing different semantic and perceptual properties. © 2012 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously, we reported that the alpha(1A)-adrenoceptor, but not the alpha(1D)-adrenoceptor, mediates pupillary dilation elicited by sympathetic nerve stimulation in rats. This study was undertaken to further characterize the alpha-adrenoceptor subtypes mediating pupillary dilation in response to both neural and agonist activation. Pupillary dilator response curves were generated by intravenous injection of norepinephrine in pentobarbital-anesthetized rats. Involvement of alpha(1)-adrenoceptors was established as mydriatic responses were inhibited by systemic administration of nonselective alpha-adrenoceptor antagonists, phentolamine (0.3-3 mg/kg) and phenoxybenzamine (0.03-0.3 mg/kg), as well as by the selective alpha(1)-adrenoceptor antagonist, prazosin (0.3 mg/kg). The alpha(2)-adrenoceptor antagonist, rauwolscine (0.5 mg/kg), was without antagonistic effects. alpha(1A)-Adrenoceptor selective antagonists, 2-([2,6-dimethoxyphenoxyethyl]aminomethyl)-1,4-benzodioxane (WB-4101; 0.1-1 mg/kg) and 5-methylurapidil (0.1-1 mg/kg), the alpha(1B)-adrenoceptor selective antagonist, 4-amino-2-[4-[1-(benzyloxycarbonyl)-2(S)- [[(1,1-dimethylethyl)amino]carbonyl]-piperazinyl]-6,7-dimethoxyquinazoline (L-765314; 0.3-1 mg/kg), as well as the alpha(1D)-adrenoceptor selective antagonist, 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione (BMY-7378; 1 mg/kg), were used to delineate the adrenoceptor subtypes involved. Mydriatic responses to norepinephrine were significantly antagonized by intravenous administration of both WB-4101 and 5-methylurapidil, but neither by L-765314 nor by BMY-7378. L-765314 (0.3-3 mg/kg, i.v.) was also ineffective in inhibiting the mydriasis evoked by cervical sympathetic nerve stimulation. These results suggest that alpha(1B)-adrenoceptors do not mediate sympathetic mydriasis in rats, and that the alpha(1A)-adrenoceptor is the exclusive subtype mediating mydriatic responses in this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxytocin (OT) influences how humans process information about others. Whether OT affects the processing of information about oneself remains unknown. Using a double-blind, placebo-controlled within-subject design, we recorded event-related potentials (ERPs) from adults during trait judgments about oneself and a celebrity and during judgments on word valence, after intranasal OT or placebo administration. We found that OT vs. placebo treatment reduced the differential amplitudes of a fronto-central positivity at 220-280 ms (P2) during self- vs. valence-judgments. OT vs. placebo treatment tended to reduce the differential amplitude of a late positive potential at 520-1000 ms (LPP) during self-judgments but to increase the differential LPP amplitude during other-judgments. OT effects on the differential P2 and LPP amplitudes to self- vs. celebrity-judgments were positively correlated with a measure of interdependence of self-construals. Thus OT modulates the neural correlates of self-referential processing and this effect varies as a function of interdependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a first study of brain activity linked to task switching in individuals with Prader-Willi syndrome (PWS) PWS individuals show a specific cognitive deficit in task switching which may be associated with the display of temper outbursts and repetitive questioning The performance of participants with PWS and typically developing controls was matched in a cued task switching procedure and brain activity was contrasted on switching and non switching blocks using SARI Individuals with PWS did not show the typical frontal-parietal pattern of neural activity associated with switching blocks, with significantly reduced activation in regions of the posterior parietal and ventromedial prefrontal cortices We suggest that this is linked to a difficulty in PWS in setting appropriate attentional weights to enable task set reconfiguration In addition to this, PWS individuals did not show the typical pattern of deactivation, with significantly less deactivation in an anterior region of the ventromedial prefrontal cortex One plausible explanation for this is that individuals with PWS show dysfunction within the default mode network which has been linked to attentional control The data point to functional changes in the neural circuitry supporting task switching in PWS even when behavioural performance is matched to controls and thus highlight neural mechanisms that may be involved in a specific pathway between genes cognition and behaviour (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Emotional responding is sensitive to social context; however, little emphasis has been placed on the mechanisms by which social context effects changes in emotional responding.

Objective: We aimed to investigate the effects of social context on neural responses to emotional stimuli to inform on the mechanisms underpinning context-linked changes in emotional responding.

Design: We measured event-related potential (ERP) components known to index specific emotion processes and self-reports of explicit emotion regulation strategies and emotional arousal. Female Chinese university students observed positive, negative, and neutral photographs, whilst alone or accompanied by a culturally similar (Chinese) or dissimilar researcher (British).

Results: There was a reduction in the positive versus neutral differential N1 amplitude (indexing attentional capture by positive stimuli) in the dissimilar relative to alone context. In this context, there was also a corresponding increase in amplitude of a frontal late positive potential (LPP) component (indexing engagement of cognitive control resources). In the similar relative to alone context, these effects on differential N1 and frontal LPP amplitudes were less pronounced, but there was an additional decrease in the amplitude of a parietal LPP component (indexing motivational relevance) in response to positive stimuli. In response to negative stimuli, the differential N1 component was increased in the similar relative to dissimilar and alone (trend) context.

Conclusion: These data suggest that neural processes engaged in response to emotional stimuli are modulated by social context. Possible mechanisms for the social-context-linked changes in attentional capture by emotional stimuli include a context-directed modulation of the focus of attention, or an altered interpretation of the emotional stimuli based on additional information proportioned by the context.