220 resultados para Grew, Nehemiah, 1641-1712
Resumo:
The effects of temperature (5-50°C), water availability (0.998-0.88 water activity, aw), and aw × temperature interactions (15-45°C) on growth of three entomogenous fungi, Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus, were evaluated on a Sabouraud dextrose-based medium modified with the ionic solute KCl, the non-ionic solute glycerol, and an inert solute, polyethylene glycol (PEG) 600. The temperature ranges for growth of B. bassiana, M. anisopliae, and P. farinosus were 5-30, 5-40, and 5-30°C, and optimum growth temperatures were 25, 30, and 20°C, respectively. All three species grew over a similar aw range (0.90-0.998) at optimum temperatures for growth. However, there were significant interspecies variations in growth rates on media modified with each of the three aw-modifying solutes. Growth aw optima ranged between 0.99 and 0.97 on KCl-, glycerol-, and PEG 600-modified media for M. anisopliae and P. farinosus. B. bassiana grew optimally at 0.998 aw, regardless of aw. Comprehensive two-dimensional profiles of aw × temperature relations for growth of these three species were constructed for the first time. The results are discussed in relation to the environmental limits that determine efficacy of entomogenous fungi as biocontrol agents in nature. © 1999 Academic Press.
Resumo:
Social signals and interpretation of carried information is of high importance in Human Computer Interaction. Often used for affect recognition, the cues within these signals are displayed in various modalities. Fusion of multi-modal signals is a natural and interesting way to improve automatic classification of emotions transported in social signals. Throughout most present studies, uni-modal affect recognition as well as multi-modal fusion, decisions are forced for fixed annotation segments across all modalities. In this paper, we investigate the less prevalent approach of event driven fusion, which indirectly accumulates asynchronous events in all modalities for final predictions. We present a fusion approach, handling short-timed events in a vector space, which is of special interest for real-time applications. We compare results of segmentation based uni-modal classification and fusion schemes to the event driven fusion approach. The evaluation is carried out via detection of enjoyment-episodes within the audiovisual Belfast Story-Telling Corpus.
Resumo:
This paper describes an end-user model for a domestic pervasive computing platform formed by regular home objects. The platform does not rely on pre-planned infrastructure; instead, it exploits objects that are already available in the home and exposes their joint sensing, actuating and computing capabilities to home automation applications. We advocate an incremental process of the platform formation and introduce tangible, object-like artifacts for representing important platform functions. One of those artifacts, the application pill, is a tiny object with a minimal user interface, used to carry the application, as well as to start and stop its execution and provide hints about its operational status. We also emphasize streamlining the user's interaction with the platform. The user engages any UI-capable object of his choice to configure applications, while applications issue notifications and alerts exploiting whichever available objects can be used for that purpose. Finally, the paper briefly describes an actual implementation of the presented end-user model. © (2010) by International Academy, Research, and Industry Association (IARIA).
Resumo:
Identifying responsibility for classes in object oriented software design phase is a crucial task. This paper proposes an approach for producing high quality and robust behavioural diagrams (e.g. Sequence Diagrams) through Class Responsibility Assignment (CRA). GRASP or General Responsibility Assignment Software Pattern (or Principle) was used to direct the CRA process when deriving behavioural diagrams. A set of tools to support CRA was developed to provide designers and developers with a cognitive toolkit that can be used when analysing and designing object-oriented software. The tool developed is called Use Case Specification to Sequence Diagrams (UC2SD). UC2SD uses a new approach for developing Unified Modelling Language (UML) software designs from Natural Language, making use of a meta-domain oriented ontology, well established software design principles and established Natural Language Processing (NLP) tools. UC2SD generates a well-formed UML sequence diagrams as output.
Resumo:
A complete nucleotide sequence of the new Pseudomonas aeruginosa Luz24likevirus phiCHU was obtained. This virus was shown to have a unique host range whereby it grew poorly on the standard laboratory strain PAO1, but infected 26 of 46 clinical isolates screened, and strains harboring IncP2 plasmid pMG53. It was demonstrated that phiCHU has single strand interruptions in its genome. Analysis of the phiCHU genome also suggested that recombination event(s) participated in the evolution of the leftmost portion of the genome, presumably encoding early genes.
Resumo:
The current study sought to assess the importance of three common variables on the outcome of TiO2 photocatalysis experiments with bacteria. Factors considered were (a) ability of test species to withstand osmotic pressure, (b) incubation period of agar plates used for colony counts following photocatalysis and (c) chemical nature of suspension medium used for bacteria and TiO2. Staphylococcus aureus, Escherichia coli, Salmonella ser. Typhimurium and Pseudomonas aeruginosa were found to vary greatly in their ability to withstand osmotic pressure, raising the possibility that osmotic lysis may be contributing to loss of viability in some photocatalytic disinfection studies. Agar plate incubation time was also found to influence results, as bacteria treated with UV light only grew more slowly than those treated with a combination of UV and TiO2. The chemical nature of the suspension medium used was found to have a particularly pronounced effect upon results. Greatest antibacterial activity was detected when aqueous sodium chloride solution was utilised, with ∼1 × 106 CFU mL-1 S. aureus being completely killed after 60 min. Moderate activity was observed when distilled water was employed with bacteria being killed after 2 h and 30 min, and no antibacterial activity at all was detected when aqueous tryptone solution was used. Interestingly, the antibacterial activity of UV light on its own appeared to be very much reduced in experiments where aqueous sodium chloride was employed instead of distilled water.
Resumo:
The research presented in this paper proposes a set of design guidelines in the context of a Parkinson's Disease (PD) rehabilitation design framework for the development of serious games for the physical therapy of people with PD. The game design guidelines provided in the paper are informed by the study of the literature review and lessons learned from the pilot testing of serious games designed to suit the requirements of rehabilitation of patients with Parkinson's Disease. The proposed PD rehabilitation design framework employed for the games pilot testing utilises a low-cost, customized and off-the-shelf motion capture system (employing commercial game controllers) developed to cater for the unique requirement of the physical therapy of people with PD. Although design guidelines have been proposed before for the design of serious games in health, this is the first research paper to present guidelines for the design of serious games specifically for PD motor rehabilitation.
Resumo:
We introduce a new parallel pattern derived from a specific application domain and show how it turns out to have application beyond its domain of origin. The pool evolution pattern models the parallel evolution of a population subject to mutations and evolving in such a way that a given fitness function is optimized. The pattern has been demonstrated to be suitable for capturing and modeling the parallel patterns underpinning various evolutionary algorithms, as well as other parallel patterns typical of symbolic computation. In this paper we introduce the pattern, we discuss its implementation on modern multi/many core architectures and finally present experimental results obtained with FastFlow and Erlang implementations to assess its feasibility and scalability.
Resumo:
Electing a leader is a fundamental task in distributed computing. In its implicit version, only the leader must know who is the elected leader. This article focuses on studying the message and time complexity of randomized implicit leader election in synchronous distributed networks. Surprisingly, the most "obvious" complexity bounds have not been proven for randomized algorithms. In particular, the seemingly obvious lower bounds of Ω(m) messages, where m is the number of edges in the network, and Ω(D) time, where D is the network diameter, are nontrivial to show for randomized (Monte Carlo) algorithms. (Recent results, showing that even Ω(n), where n is the number of nodes in the network, is not a lower bound on the messages in complete networks, make the above bounds somewhat less obvious). To the best of our knowledge, these basic lower bounds have not been established even for deterministic algorithms, except for the restricted case of comparison algorithms, where it was also required that nodes may not wake up spontaneously and that D and n were not known. We establish these fundamental lower bounds in this article for the general case, even for randomized Monte Carlo algorithms. Our lower bounds are universal in the sense that they hold for all universal algorithms (namely, algorithms that work for all graphs), apply to every D, m, and n, and hold even if D, m, and n are known, all the nodes wake up simultaneously, and the algorithms can make any use of node's identities. To show that these bounds are tight, we present an O(m) messages algorithm. An O(D) time leader election algorithm is known. A slight adaptation of our lower bound technique gives rise to an Ω(m) message lower bound for randomized broadcast algorithms.
An interesting fundamental problem is whether both upper bounds (messages and time) can be reached simultaneously in the randomized setting for all graphs. The answer is known to be negative in the deterministic setting. We answer this problem partially by presenting a randomized algorithm that matches both complexities in some cases. This already separates (for some cases) randomized algorithms from deterministic ones. As first steps towards the general case, we present several universal leader election algorithms with bounds that tradeoff messages versus time. We view our results as a step towards understanding the complexity of universal leader election in distributed networks.
Resumo:
The design cycle for complex special-purpose computing systems is extremely costly and time-consuming. It involves a multiparametric design space exploration for optimization, followed by design verification. Designers of special purpose VLSI implementations often need to explore parameters, such as optimal bitwidth and data representation, through time-consuming Monte Carlo simulations. A prominent example of this simulation-based exploration process is the design of decoders for error correcting systems, such as the Low-Density Parity-Check (LDPC) codes adopted by modern communication standards, which involves thousands of Monte Carlo runs for each design point. Currently, high-performance computing offers a wide set of acceleration options that range from multicore CPUs to Graphics Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs). The exploitation of diverse target architectures is typically associated with developing multiple code versions, often using distinct programming paradigms. In this context, we evaluate the concept of retargeting a single OpenCL program to multiple platforms, thereby significantly reducing design time. A single OpenCL-based parallel kernel is used without modifications or code tuning on multicore CPUs, GPUs, and FPGAs. We use SOpenCL (Silicon to OpenCL), a tool that automatically converts OpenCL kernels to RTL in order to introduce FPGAs as a potential platform to efficiently execute simulations coded in OpenCL. We use LDPC decoding simulations as a case study. Experimental results were obtained by testing a variety of regular and irregular LDPC codes that range from short/medium (e.g., 8,000 bit) to long length (e.g., 64,800 bit) DVB-S2 codes. We observe that, depending on the design parameters to be simulated, on the dimension and phase of the design, the GPU or FPGA may suit different purposes more conveniently, thus providing different acceleration factors over conventional multicore CPUs.
Resumo:
Mycobacteria are associated with a number of well-characterized diseases, yet we know little about their stress-biology in natural ecosystems. This study focuses on the isolation and characterization of strains from Yellowstone-(YNP) and Glacier-National-Parks (GNP; USA), the majority of those identified were Mycobacterium parascrofulaceum, Mycobacterium avium (YNP) or Mycobacterium gordonae (GNP). Generally, their temperature windows for growth were >60°C; selected isolates grew at super-saturated concentrations of hydrophobic stressors and at levels of osmotic stress and chaotropic activity (up to 13.4 kJkg-1) similar to, or exceeding, those for the xerophilic fungus Aspergillus wentii and solvent-tolerant bacterium Pseudomonas putida. For example, mycobacteria grew down to 0.800 water-activity indicating that they are, with the sole exception of halophiles, more xerotolerant than other bacteria (or any Archaea). Furthermore, the fatty-acid composition of Mycobacterium cells grown over a range of salt concentrations changed less than that of other bacteria, indicating a high level of resilience, regardless of the stress load. Cells of M. parascrofulaceum, M. smegmatis and M. avium resisted the acute, potentially lethal challenges from extremes of pH (<1; >13), and saturated MgCl2-solutions (5 M; 212 kJ kg-1 chaotropicity). Collectively, these findings challenge the paradigm that bacteria have solute tolerances inferior to those of eukaryotes.
Resumo:
Several agricultural fields show high contents of arsenic because of irrigation with arsenic- contaminated groundwater. Vegetables accumulate arse- nic in their edible parts when grown in contaminated soils. Polluted vegetables are one of the main sources of arsenic in the food chain, especially for people living in rural arsenic endemic villages of India and Bangladesh. The aim of this study was to assess the feasibility of floriculture in the crop rotation system of arsenic en- demic areas of the Bengal Delta. The effects of different arsenic concentrations (0, 0.5, 1.0, and 2.0 mg As L−1) and types of flowering plant (Gomphrena globosa and Zinnia elegans) on plant growth and arsenic accumula- tion were studied under hydroponic conditions. Total arsenic was quantified using atomic absorption spec- trometer with hydride generation (HG-AAS). Arsenic was mainly accumulated in the roots (72 %), followed by leaves (12 %), stems (10 %), and flowers (<1 %). The flowering plants studied did not show as high phytoremediation capacities as other wild species, suchas ferns. However, they behaved as arsenic tolerant plants and grew and bloomed well, without showing any phytotoxic signs. This study proves that floriculture could be included within the crop rotation system in arsenic-contaminated agricultural soils, in order to im- prove food safety and also food security by increasing farmer’s revenue.
Resumo:
UNLABELLED: Influenza A viruses counteract the cellular innate immune response at several steps, including blocking RIG I-dependent activation of interferon (IFN) transcription, interferon (IFN)-dependent upregulation of IFN-stimulated genes (ISGs), and the activity of various ISG products; the multifunctional NS1 protein is responsible for most of these activities. To determine the importance of other viral genes in the interplay between the virus and the host IFN response, we characterized populations and selected mutants of wild-type viruses selected by passage through non-IFN-responsive cells. We reasoned that, by allowing replication to occur in the absence of the selection pressure exerted by IFN, the virus could mutate at positions that would normally be restricted and could thus find new optimal sequence solutions. Deep sequencing of selected virus populations and individual virus mutants indicated that nonsynonymous mutations occurred at many phylogenetically conserved positions in nearly all virus genes. Most individual mutants selected for further characterization induced IFN and ISGs and were unable to counteract the effects of exogenous IFN, yet only one contained a mutation in NS1. The relevance of these mutations for the virus phenotype was verified by reverse genetics. Of note, several virus mutants expressing intact NS1 proteins exhibited alterations in the M1/M2 proteins and accumulated large amounts of deleted genomic RNAs but nonetheless replicated to high titers. This suggests that the overproduction of IFN inducers by these viruses can override NS1-mediated IFN modulation. Altogether, the results suggest that influenza viruses replicating in IFN-competent cells have tuned their complete genomes to evade the cellular innate immune system and that serial replication in non-IFN-responsive cells allows the virus to relax from these constraints and find a new genome consensus within its sequence space.
IMPORTANCE: In natural virus infections, the production of interferons leads to an antiviral state in cells that effectively limits virus replication. The interferon response places considerable selection pressure on viruses, and they have evolved a variety of ways to evade it. Although the influenza virus NS1 protein is a powerful interferon antagonist, the contributions of other viral genes to interferon evasion have not been well characterized. Here, we examined the effects of alleviating the selection pressure exerted by interferon by serially passaging influenza viruses in cells unable to respond to interferon. Viruses that grew to high titers had mutations at many normally conserved positions in nearly all genes and were not restricted to the NS1 gene. Our results demonstrate that influenza viruses have fine-tuned their entire genomes to evade the interferon response, and by removing interferon-mediated constraints, viruses can mutate at genome positions normally restricted by the interferon response.
Resumo:
The effect of the microfilament inhibitor cytochalasin B (10 and 100 micrograms/ml) on the ultrastructure of adult Fasciola hepatica was determined in vitro by scanning and transmission electron microscopy (SEM, TEM) using both intact flukes and tissue-slice material. SEM revealed that initial swelling of the tegument led to surface blebbing and limited areas of sloughing after 24 h treatment at 100 micrograms/ml. In the tegumental syncytium, basal accumulations of secretory bodies (especially T2s) were evident in the earlier time periods but declined with longer incubations, until few secretory bodies remained in the syncytium overall. Blebbing of the apical plasma membrane and occasional areas of breakdown and sloughing of the tegument were observed over longer periods of treatment at 100 micrograms/ml. In the tegumental cell bodies, the Golgi complexes gradually decreased in size and activity, and few secretory bodies were produced. In the later time periods, the cells assumed abnormal shapes, the cytoplasm shrinking in towards the nucleus. In the vitelline follicles, a random dispersion of shell protein globules was evident within the intermediate-type cells, rather than their being organized into distinct shell globule clusters. Disruption of this process was more severe at the higher concentration of 100 micrograms/ml and again was more evident in tissue-slice material. In the latter, after prolonged (12 h) exposure to cytochalasin B, the intermediate and mature vitelline cells were filled with loosely packed and expanded shell globule clusters, containing few shell protein globules. The mature vitelline cells continued to lay down "yolk" globules and glycogen deposits. Disruption of the network of processes from the nurse cells was evident at the higher concentration of cytochalasin. Spaces began to appear between the vitelline cells and grew larger with progressively longer incubation periods, and the cells themselves assumed abnormal shapes. A number of binucleate stem cells were observed in tissue-slice material at the longest incubation period (12 h).