333 resultados para DIABETIC COMPLICATIONS
Resumo:
Kallistatin, a serpin widely produced throughout the body, has vasodilatory, anti-angiogenic, anti-oxidant, and anti-inflammatory effects. Effects of diabetes and its vascular complications on serum kallistatin levels are unknown.
Resumo:
Although Wnt signaling is known to mediate multiple biological and pathological processes, its association with diabetic retinopathy (DR) has not been established. Here we show that retinal levels and nuclear translocation of beta-catenin, a key effector in the canonical Wnt pathway, were increased in humans with DR and in three DR models. Retinal levels of low-density lipoprotein receptor-related proteins 5 and 6, coreceptors of Wnts, were also elevated in the DR models. The high glucose-induced activation of beta-catenin was attenuated by aminoguanidine, suggesting that oxidative stress is a direct cause for the Wnt pathway activation in diabetes. Indeed, Dickkopf homolog 1, a specific inhibitor of the Wnt pathway, ameliorated retinal inflammation, vascular leakage, and retinal neovascularization in the DR models. Dickkopf homolog 1 also blocked the generation of reactive oxygen species induced by high glucose, suggesting that Wnt signaling contributes to the oxidative stress in diabetes. These observations indicate that the Wnt pathway plays a pathogenic role in DR and represents a novel therapeutic target.
Resumo:
Coated-platelet levels were quantified in 58 people with Type 1 diabetes, 90 with Type 2 diabetes, and 54 non-diabetic controls. In diabetes high coated-platelet levels were related to smoking and glucose control drugs, but not to glycaemia or other drugs. Prospective studies should evaluate coated-platelets and complications and drug effects.
Resumo:
Purpose: The pathogenesis of diabetic retinopathy (DR) is not fully understood. Clinical studies suggest that dyslipidemia is associated with the initiation and progression of DR. However, no direct evidence supports this theory.
Methods: Immunostaining of apolipoprotein B100 (ApoB100, a marker of low-density lipoprotein [LDL]), macrophages, and oxidized LDL was performed in retinal sections from four different groups of subjects: nondiabetic, type 2 diabetic without clinical retinopathy, diabetic with moderate nonproliferative diabetic retinopathy (NPDR), and diabetic with proliferative diabetic retinopathy (PDR). Apoptosis was characterized using the TUNEL assay. In addition, in cell culture studies using in vitro-modi?ed LDL, the induction of apoptosis by heavily oxidized-glycated LDL (HOG-LDL) in human retinal capillary
pericytes (HRCPs) was assessed.
Results: Intraretinal immuno?uorescence of ApoB100 increased with the severity of DR. Macrophages were prominent only in sections from diabetic patients with PDR. Merged images revealed that ApoB100 partially colocalized with macrophages. Intraretinal oxidized LDL was absent in nondiabetic subjects but present in all three diabetic groups, increasing with the severity of DR. TUNEL-positive cells were present in retinas from diabetic subjects but absent in those from nondiabetic subjects. In cell culture, HOG-LDL induced the activation of caspase, mitochondrial dysfunction, and apoptosis in
HRCPs.
Conclusions: These ?ndings suggest a potentially important role for extravasated, modi?ed LDL in promoting DR by promoting apoptotic pericyte loss.
Resumo:
Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. HDL plays an important role in limiting vascular damage by removing cholesterol and cholesteryl ester hydroperoxides from oxidized low density lipoprotein and foam cells. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q(84)-M(86)-K(88), W(108)-M(112)-R(116), and L(144)-M(148)-R(149). These peptides and their Met(O) analogs were identified and quantified by mass spectrometry. Relative to controls, Met(O) formation was significantly increased at all three locations (Met(86), Met(112), and Met(148)) in diabetic patients. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N(epsilon)-malondialdehyde-lysine or N(epsilon)-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Using the methods developed here, future studies can address the relationship between Met(O) in apoA-I and the risk, development, or progression of the vascular complications of diabetes.
Resumo:
Aims/hypothesis: Matrix metalloproteinases (MMPs) and their natural inhibitors, tissue inhibitor of metalloproteinases (TIMPs), regulate important biological processes including the homeostasis of the extracellular matrix, proteolysis of cell surface proteins, proteinase zymogen activation, angiogenesis and inflammation. Studies have shown that their balance is altered in retinal microvascular tissues in diabetes. Since LDLs modified by oxidation/glycation are implicated in the pathogenesis of diabetic vascular complications, we examined the effects of modified LDL on the gene expression and protein production of MMPs and TIMPs in retinal pericytes. Methods: Quiescent human retinal pericytes were exposed to native LDL (N-LDL), glycated LDL (G-LDL) and heavily oxidised and glycated LDL (HOG-LDL) for 24 h. We studied the expression of the genes encoding MMPs and TIMPs mRNAs by analysis of microarray data and quantitative PCR, and protein levels by immunoblotting and ELISA. Results: Microarray analysis showed that MMP1, MMP2, MMP11, MMP14 and MMP25 and TIMP1, TIMP2, TIMP3 and TIMP4 were expressed in pericytes. Of these, only TIMP3 mRNA showed altered regulation, being expressed at significantly lower levels in response to HOG- vs N-LDL. Quantitative PCR and immunoblotting of cell/matrix proteins confirmed the reduction in TIMP3 mRNA and protein in response to HOG-LDL. In contrast to cellular TIMP3 protein, analysis of secreted TIMP1, TIMP2, MMP1 and collagenase activity indicated no changes in their production in response to modified LDL. Combined treatment with N- and HOG-LDL restored TIMP3 mRNA expression to a level comparable with that after N-LDL alone. Conclusions/interpretation: Among the genes encoding for MMPs and TIMPs expressed in retinal pericytes, TIMP3 is uniquely regulated by HOG-LDL. Reduced TIMP3 expression might contribute to microvascular abnormalities in diabetic retinopathy. © 2007 Springer-Verlag.
Resumo:
This paper addresses the consequences of diabetes and obesity, diseases that have become epidemic in our society, particularly in the past 20 years. Specifically, it summarizes current knowledge about some of the risk factors and mechanisms for the vascular complications of diabetes. These complications can be broadly divided into microvascular disease, such as diabetic retinopathy and diabetic nephropathy, and macrovascular disease, such as accelerated atherosclerosis, and they are the main cause for morbidity and premature mortality among diabetic patients. The roles of hyperglycemia, dyslipidemia and dyslipoproteinemia, oxidative stress, and endothelial dysfunction will be considered. Finally, the "treatment gap" will be addressed. This gap refers to our failure to achieve currently accepted goals to reduce established risk factors for complications in the clinical management of diabetic patients.
Resumo:
Serum apolipoprotein C-III (apoCIII) concentration and apoCIII gene polymorphisms have been shown to be a risk factor for cardiovascular disease; however, the underlying mechanisms remain unclear. In addition, no studies have been performed that address these issues in type 1 diabetes. The current study investigated apoCIII protein and apoCIII gene variation in a normotriglyceridemic (82 +/- 57 mg/dL) population of patients with type 1 diabetes, the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications (DCCT/EDIC) cohort. Blood samples were obtained in 409 patients after an overnight fast. Serum apoCIII concentration was highly correlated with multiple changes in lipids and lipoproteins that resulted in an adverse cardiovascular disease risk profile. Higher apoCIII concentrations were associated (P <.0001) with increased triglycerides (r = 0.78), total (r = 0.61) and low-density lipoprotein (LDL) (r = 0.40) cholesterol, apoA-I (r = 0.26), and apoB (r = 0.50), and these relationships persisted after controlling for age, gender, body mass index (BMI), and hemoglobin A1c (HbA1c). Nuclear magnetic resonance (NMR) lipoprotein subclass analyses demonstrated that apoCIII was correlated with an increase in very-low-density lipoprotein (VLDL) subclasses (P = .0001). There also was a highly significant positive relationship between serum apoCIII concentration and the LDL particle concentration in both men (r = 0.49, P = .001) and women (r = 0.40, P = .001), and a highly significant negative relationship between serum apoCIII levels and average LDL particle size in both men (r = -0.37, P = .001) and women (r = -0.22, P = .001) due primarily to an augmentation in the small L1 subclass (r = 0.42, P = .0001). Neither the T(-455) --> C polymorphism affecting an insulin response element in the apoCIII gene promoter nor a SacI polymorphism in the 3'UTR were associated with any alterations in circulating apoCIII concentrations, serum lipids, apolipoprotein concentrations, lipoprotein composition, or parameters measured by NMR lipoprotein subclass analyses. In summary, elevated apoCIII concentration was associated with risk factors for cardiovascular disease in normolipidemic type 1 diabetic patients through associated changes in lipoprotein subfraction distributions, which were independent of apoCIII genotype.
Resumo:
Lipoproteins may contribute to diabetic nephropathy. Nuclear magnetic resonance (NMR) can quantify subclasses and mean particle size of very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL), and LDL particle concentration. The relationship between detailed lipoprotein analyses and diabetic nephropathy is of interest.
Resumo:
To relate the nuclear magnetic resonance (NMR)-determined lipoprotein profile, conventional lipid and apolipoprotein measures, and in vitro oxidizibility of LDL with gender and glycemia in type 1 diabetes.
Resumo:
Glycation of lipoproteins is implicated in the development of the macro- and microvascular complications of diabetes, atherosclerosis in general, and other disease processes including aging. Enhanced glycation may have direct effects, and may also amplify the effects of oxidative stress on lipoproteins. Most studies have examined the effects of glycation of LDL, particularly with respect to its atherogenicity. Other lipoproteins are more difficult to study because their several apolipoproteins, being of varying age, are not uniformly exposed to glucose. Inhibition of the combined stresses of glycation and oxidation towards lipoproteins may have beneficial effects on health.
Resumo:
To assess the significance of glycation, nonenzymatic browning, and oxidation of lens crystallins in cataract formation in elderly diabetic patients, we measured three distinct products of glycation, browning, and oxidation reactions in cataractous lens crystallins from 29 diabetic patients (mean +/- SD age 72.8 +/- 8.8 yr) and 24 nondiabetic patients (age 73.5 +/- 8.3 yr). Compounds measured included 1) fructoselysine (FL), the first stable product of glycation; 2) pentosidine, a fluorescent, carbohydrate-derived protein cross-link between lysine and arginine residues formed during nonenzymatic browning; and 3) N epsilon-(carboxymethyl)lysine (CML), a product of autoxidation of sugar adducts to protein. In diabetic compared with nondiabetic patients, there were significant increases (P less than 0.001) in HbA1 (10.2 +/- 3.1 vs. 7.1 +/- 0.7%), FL (7.6 +/- 5.4 vs. 1.7 +/- 1.2 mmol/mol lysine), and pentosidine (6.3 +/- 2.8 vs. 3.8 +/- 1.9 mumol/mol lysine). The disproportionate elevation of FL compared with HbA1 suggests a breakdown in the lens barrier to glucose in diabetes, whereas the increase in pentosidine is indicative of accelerated nonenzymatic browning of diabetic lens crystallins. CML levels were similar in the two groups (7.1 +/- 2.4 vs. 6.8 +/- 3.0 mmol/mol lysine), providing no evidence for increased oxidative stress in the diabetic cataract. Thus, although the modification of lens crystallins by autoxidation reactions was not increased in diabetes, the increase in glycation and nonenzymatic browning suggests that these processes may acclerate the development of cataracts in diabetic patients.
Resumo:
The very low- and low-density lipoprotein fractions were isolated from 16 normolipidaemic Type 2 (non-insulin-dependent) diabetic patients in good to fair glycaemic control and from corresponding age-, sex-, and race-matched, non-diabetic control subjects. Rates of cholesteryl ester synthesis averaged 268 +/- 31 vs 289 +/- 40 pmol 14C-cholesteryl oleate.mg cell protein-1.20 h-1 for very low- and 506 +/- 34 vs 556 +/- 51 pmol 14C-cholesteryl oleate.mg cell protein-1.20 h-1 for low-density lipoproteins isolated from the Type 2 diabetic patients and control subjects, respectively, when they were incubated with human macrophages. A group of approximately one-third of the patients was selected for separate analyses because very low-density lipoproteins isolated from these patients did stimulate more cholesteryl ester synthesis when incubated with macrophages. There were no significant differences in the lipid composition of the lipoproteins isolated from the three groups of subjects. The relative proportion of apoprotein C to apoprotein E was significantly decreased (p less than 0.002) in the very low-density lipoproteins from diabetic patients and was further decreased in samples from these selected diabetic patients. The apoprotein C-I content of very low-density lipoproteins isolated from diabetic patients was increased compared to control subjects and was further increased in samples from the selected diabetic patients (p less than 0.02). There were no significant differences in the proportions of apoproteins C-III-0, C-III-1, or C-III-2 among the three groups. These studies suggest that in normolipidaemic Type 2 diabetic patients, the apoprotein composition of VLDL is abnormal and this may alter VLDL macrophage interactions and thus contribute to the increased prevalence of atherosclerosis in diabetic patients.
Resumo:
Very-low-density lipoproteins (VLDL) (density less than 1.006 g/mL) were isolated from type I (insulin-dependent) diabetic patients in good to fair glycemic control and from age-, sex-, and race-matched, nondiabetic, control subjects. VLDL were incubated with human, monocyte-derived macrophages obtained from nondiabetic donors, and the rates of cellular cholesteryl ester synthesis and cholesterol accumulation were determined. VLDL isolated from diabetic patients stimulated significantly more cholesteryl ester synthesis than did VLDL isolated from control subjects (4.04 +/- 1.01 v 1.99 +/- 0.39 nmol 14C-cholesteryl oleate synthesized/mg cell protein/20 h; mean +/- SEM, P less than .05). The stimulation of cholesteryl ester synthesis in macrophages incubated with VLDL isolated from diabetic patients was paralleled by a significant increase in intracellular cholesteryl ester accumulation (P less than .05). The increase in cholesteryl ester synthesis and accumulation in macrophages were mediated by a significant increase in the receptor mediated, high affinity degradation (2.55 +/- 0.23 v 2.12 +/- 0.20 micrograms degraded/mg cell protein/20 h) and accumulation (283 +/- 35 v 242 +/- 33 ng/mg cell protein/20 h) of 125I-VLDL isolated from diabetic patients compared with VLDL from control subjects. To determine if changes in VLDL apoprotein composition were responsible for the observed changes in cellular rates of cholesteryl ester synthesis and accumulation, we also examined the apoprotein composition of the VLDL from both groups. There were no significant differences between the apoproteins B, E, and C content of VLDL from both groups. We also determined the chemical composition of VLDL isolated from both groups of subjects.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Diabetes mellitus is an independent risk factor in the development of atherosclerosis. In this study we aimed to demonstrate whether there is an abnormal interaction between low-density lipoproteins from diabetic patients and human macrophages. We measured cholesteryl ester synthesis and cholesteryl ester accumulation in human monocyte-derived macrophages (obtained from non-diabetic donors) incubated with low density lipoproteins from Type 1 (insulin-dependent) diabetic patients in good or fair glycaemic control. Low density lipoproteins from the diabetic patients stimulated more cholesteryl ester synthesis than low density lipoproteins from non-diabetic control subjects (7.19 +/- 1.19 vs 6.11 +/- 0.94 nmol/mg cell protein/20 h, mean +/- SEM, p less than 0.05). The stimulation of cholesteryl ester synthesis by low density lipoproteins isolated from diabetic patients was paralleled by a significant increase in intracellular cholesteryl ester accumulation (p less than 0.02). There were no significant differences in the lipid composition of low density lipoproteins between the diabetic and control groups. Non-enzymatic glycosylation of low density lipoproteins was higher in the diabetic group (p less than 0.01) and correlated significantly with cholesteryl ester synthesis (r = 0.58). Similarly, low-density lipoproteins obtained from non-diabetic subjects and glycosylated in vitro stimulated more cholesteryl ester synthesis in macrophages than control low density lipoproteins. The increase in cholesteryl ester synthesis and accumulation by cells exposed to low density lipoproteins from diabetic patients seems to be mediated by an increased uptake of these lipoproteins by macrophages.(ABSTRACT TRUNCATED AT 250 WORDS)