214 resultados para BANDWIDTH MEASUREMENTS
Resumo:
Objective: To compare the reproducibility of optic disk measurements provided by an image analyzer and a scanning laser tomograph. Methods: Ten images of the same eye of 10 normal volunteers were taken with the Heidelberg Retina Tomograph and with the Topcon ImageNet. Intraclass correlation coefficient (ICC) and coefficient of variation (CV) were used to evaluate the reproducibility of the measurements. Results: Eleven parameters were analyzed with the Topcon ImageNet. Six parameters (55%) had ICC greater than 90%. Four parameters (36%) had CV less than 10%. Twelve parameters were evaluated with the Heidelberg Retina Tomograph. Nine parameters (75%) had ICC over 90%. Nine parameters (75%) had CV less than 10%. Conclusion: Both systems provided reproducible data. The optic disk parameters provided by the Heidelberg Retina Tomograph had a better reproducibility than those obtained from the Topcon ImageNet.
Resumo:
DGT (diffusive gradients in thin-films) has been proposed as a tool for predicting Cd concentrations in rice grain, but there is a lack of authenticating data. To further explore the relationship between DGT measured Cd and concentrations in rice cultivated in challenging, metal degraded, field locations with different heavy metal pollutant sources, 77 paired soil and grain samples were collected in Southern China from industrial zones, a "cancer village" impacted by mining waste and an organic farm. In situ deployments of DGT in flooded paddy rice rhizospheres were compared with a laboratory DGT assay on dried and rewetted soil. Total soil concentrations were a very poor predictor of plant uptake. Laboratory and field deployed DGT assays and porewater measurements were linearly related to grain concentrations in all but the most contaminated samples where plant toxicity occurred. The laboratory DGT assay was the best predictor of grain Cd concentrations, accommodating differences in soil Cd, pollutant source, and Cd:Zn ratios. Field DGT measurements showed that Zn availability in the flooded rice rhizospheres was greatly diminished compared to that of Cd, resulting in very high Cd:Zn ratios (0.1) compared to commonly observed values (0.005). These results demonstrate the potential of the DGT technique to predict Cd concentrations in field cultivated rice and demonstrate its robustness in a range of environments. Although, field deployments provided important details about in situ element stoichiometry, due to the inherent heterogeneity of the rice rhizosphere soils, deployment of DGT in dried and homogenized soils offers the best possibility of a soil screening tool.
Resumo:
We present a novel antenna matching technique that uses the Imaginary Smith Chart to permit wideband matching of an evanescent open-ended waveguide antenna using a dielectric sheet air-spaced from the aperture. The fabricated antenna design is demonstrated to have a measured bandwidth of 24%, from 2.13–2.7 GHz, for reflection coefficient $qquad{<} -!!10~{rm dB}$ , with 2.725 GHz waveguide cutoff. The antenna's maximum aperture dimension is ${< 0.5}lambda_{0}$ at the upper frequency in the bandwidth and so it is suitable for use in a wide angle scanning phased array
Resumo:
The application of electric bias across tip–surface junctions in scanning probe microscopy can readily induce surface and bulk electrochemical processes that can be further detected though changes in surface topography, Faradaic or conductive currents, or electromechanical strain responses. However, the basic factors controlling tip-induced electrochemical processes, including the relationship between applied tip bias and the thermodynamics of local processes, remains largely unexplored. Using the model Li-ion reduction reaction on the surface in Li-ion conducting glass ceramic, we explore the factors controlling Li-metal formation and find surprisingly strong effects of atmosphere and back electrode composition on the process. We find that reaction processes are highly dependent on the nature of the counter electrode and environmental conditions. Using a nondepleting Li counter electrode, Li particles could grow significantly larger and faster than a depleting counter electrode. Significant Li ion depletion leads to the inability for further Li reduction. Time studies suggest that Li diffusion replenishes the vacant sites after 12 h. These studies suggest the feasibility of SPM-based quantitative electrochemical studies under proper environmental controls, extending the concepts of ultramicroelectrodes to the single-digit nanometer scale.
Resumo:
The current study monitors both the short- and long-term hydration characteristics of concrete using discretized conductivity measurements from initial gauging, through setting and hardening, the latter comprising both the curing and post-curing periods. In particular, attention is directed to the near-surface concrete as it is this zone which protects the steel from the external environment and has a major influence on durability, performance and service-life. A wide range of concrete mixes is studied comprising both plain Portland cement concretes and concretes containing fly-ash and ground granulated blast furnace slag. The parameter normalised conductivity was used to identify four distinct stages in the hydration process and highlight the influence of supplementary cementitious materials (SCM) on hydration and hydration kinetics. A relationship has been presented to account for the temporal decrease in conductivity, post 10-days hydration. The testing procedure and methodology presented lend itself to in-situ monitoring of reinforced concrete structures. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
While on site measurement of air permeability provides a useful approach for assessing the likely long term durability of concrete structures, no existing test method is capable of effectively determining the relative permeability of high performance concrete (HPC). Lack of instrument sensitivity and the influence of concrete moisture are proposed as two key reasons for this phenomenon. With limited systematic research carried out in this area to date, the aim if this study was to investigate the influence of instrument sensitivity and moisture condition on air permeability measurements for both normal concrete and HPC. To achieve a range of moisture conditions, samples were dried initially for between one and 5 weeks and then sealed in polythene sheeting and stored in an oven at 50 C to internally distribute moisture evenly. Moisture distribution was determined throughout using relative humidity probe and electrical resistance measurements. Concrete air permeability was subsequently measured using standardised air permeability (Autoclam) and water penetration (BS EN: 12390-8) tests to assess differences between the HPCs tested in this study. It was found that for both normal and high performance concrete, the influence of moisture on Autoclam air permeability results could be eliminated by pre-drying (50 ± 1 C, RH 35%) specimens for 3 weeks. While drying for 5 weeks alone was found not to result in uniform internal moisture distributions, this state was achieved by exposing specimens to a further 3 weeks of sealed pre-conditioning at 50 ± 1 C. While the Autoclam test was not able to accurately identify relative HPC quality due to low sensitivity at associated performance levels, an effective preconditioning procedure to obtain reliable air permeability of HPC concretes was identified. © 2013 The Authors
Resumo:
We present in this work a comparative study on density and transport properties, such as the conductivity (sigma), viscosity (eta) and self-diffusion coefficients (D), for electrolytes based on the lithium hexafluorophosphate, LiPF6; or on the lithium tris(pentafluoroethane)-trifluorophosphate, LiFAP dissolved in a binary mixture of ethylene carbonate (EC) and dimethylcarbonate (DMC) (50:50 wt%). For each electrolyte, the temperature dependence on transport properties over a temperature range from 10 to 80 degrees C and 20 to 70 degrees C for viscosity and conductivity, respectively, exhibits a non-Arrhenius behavior. However, this dependence is correctly correlated by using the Vogel-Tamman-Fulcher (VTF) type fitting equation. In each case, the best-fit parameters, such as the pseudo activation energy and ideal glass transition temperature were then extracted. The self-diffusion coefficients (D) of the Li+ cation and PF6- or FAP(-) anions species, in each studied electrolyte, were then independently determined by observing Li-3, F-19 and P-31 nuclei with the pulsed-gradient spin-echo (PGSE) NMR technique over the same temperature range from 20 to 80 degrees C. Results show that even if the diffusion of the lithium cation is quite similar in both electrolytes, the anions diffusion differs notably. In the case of the LiPF6-based electrolyte, for example at T approximate to 75 degrees C (high temperature), the self-diffusion coefficients of Li+ cations in solution (D (Li+)approximate to 5 x 10(-19) m(2) s(-1)) is 1.6 times smaller than that of PF6- anions (D (PF6-) = 8.5 x 10(-19) m(2) s(-1)), whereas in the case of the LiFAP-based electrolyte, FAP(-) anions diffuse at same rate as the Li+ cations (D (FAP(-)) = 5 x 10(-1) m(2) s(-1)). Based on these experimental results, the transport mobility of ions were then investigated through Stokes-Einstein and Nernst-Einstein equations to determine the transport number of lithium t(Li)(+), effective radius of solvated Li+ and of PF6- and FAP(-) anions, and the degree of dissociation of these lithium salts in the selected EC/DMC (50:50 wt%) mixture over a the temperature range from 20 to 80 degrees C. This study demonstrates the conflicting nature of the requirements and the advantage of the well-balanced properties as ionic mobility and dissociation constant of the selected electrolytes. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
This work investigated the differences between multileaf collimator (MLC) positioning accuracy determined using either log files or electronic portal imaging devices (EPID) and then assessed the possibility of reducing patient specific quality control (QC) via phantom-less methodologies. In-house software was developed, and validated, to track MLC positional accuracy with the rotational and static gantry picket fence tests using an integrated electronic portal image. This software was used to monitor MLC daily performance over a 1 year period for two Varian TrueBeam linear accelerators, with the results directly compared with MLC positions determined using leaf trajectory log files. This software was validated by introducing known shifts and collimator errors. Skewness of the MLCs was found to be 0.03 ± 0.06° (mean ±1 standard deviation (SD)) and was dependent on whether the collimator was rotated manually or automatically. Trajectory log files, analysed using in-house software, showed average MLC positioning errors with a magnitude of 0.004 ± 0.003 mm (rotational) and 0.004 ± 0.011 mm (static) across two TrueBeam units over 1 year (mean ±1 SD). These ranges, as indicated by the SD, were lower than the related average MLC positioning errors of 0.000 ± 0.025 mm (rotational) and 0.000 ± 0.039 mm (static) that were obtained using the in-house EPID based software. The range of EPID measured MLC positional errors was larger due to the inherent uncertainties of the procedure. Over the duration of the study, multiple MLC positional errors were detected using the EPID based software but these same errors were not detected using the trajectory log files. This work shows the importance of increasing linac specific QC when phantom-less methodologies, such as the use of log files, are used to reduce patient specific QC. Tolerances of 0.25 mm have been created for the MLC positional errors using the EPID-based automated picket fence test. The software allows diagnosis of any specific leaf that needs repair and gives an indication as to the course of action that is required.
Resumo:
We consider the concept of temperature in a setting beyond the standard thermodynamics prescriptions. Namely, rather than restricting to standard coarse-grained measurements, we consider observers able to master any possible quantum measurement -a scenario that might be relevant at nanoscopic scales. In this setting, we focus on quantum systems of coupled harmonic oscillators and study the question of whether the temperature is an intensive quantity, in the sense that a block of a thermal state can be approximated by an effective thermal state at the same temperature as the whole system. Using the quantum fidelity as figure of merit, we identify instances in which this approximation is not valid, as the block state and the reference thermal state are distinguishable for refined measurements. Actually, there are situations in which this distinguishability even increases with the block size. However, we also show that the two states do become less distinguishable with the block size for coarse-grained measurements -thus recovering the standard picture. We then go further and construct an effective thermal state which provides a good approximation of the block state for any observables and sizes. Finally, we point out the role that entanglement plays in this scenario by showing that, in general, the thermodynamic paradigm of local intensive temperature applies whenever entanglement is not present in the system. Copyright (C) EPLA, 2012
Resumo:
Cloning of observables, unlike standard cloning of states, aims at copying the information encoded in the statistics of a class of observables rather then on quantum states themselves. In such a process the emphasis is on the quantum operation (evolution plus measurement) necessary to retrieve the original information. We analyze, for qubit systems, the cloning of a class generated by two noncommuting observables, elucidating the relationship between such a process and joint measurements. This helps in establishing an optimality criterion for cloning of observables. We see that, even if the cloning machine is designed to act on the whole class generated by two noncommuting observables, the same optimal performances of a joint measurement can be attained. Finally, the connection with state dependent cloning is enlightened.
Resumo:
We investigate the violation of local realism in Bell tests involving homodyne measurements performed on multimode continuous-variable states. By binning the measurement outcomes in an appropriate way, we prove that the Mermin-Klyshko inequality can be violated by an amount that grows exponentially with the number of modes. Furthermore, the maximum violation allowed by quantum mechanics can be attained for any number of modes, albeit requiring a quantum state whose generation is hardly practicable. Interestingly, this exponential increase of the violation holds true even for simpler states, such as multipartite GHZ states. The resulting benefit of using more modes is shown to be significant in practical multipartite Bell tests by analyzing the increase of the robustness to noise with the number of modes. In view of the high efficiency achievable with homodyne detection, our results thus open a possible way to feasible loophole-free Bell tests that are robust to experimental imperfections. We provide an explicit example of a three-mode state (a superposition of coherent states) which results in a significantly high violation of the Mermin-Klyshko inequality (around 10%) with homodyne measurements.
Resumo:
We analyze the nature of the statistics of the work done on or by a quantum many-body system brought out of equilibrium. We show that, for the sudden quench and for an initial state that commutes with the initial Hamiltonian, it is possible to retrieve the whole nonequilibrium thermodynamics via single projective measurements of observables. We highlight, in a physically clear way, the qualitative implications for the statistics of work coming from considering processes described by operators that either commute or do not commute with the unperturbed Hamiltonian of a given system. We consider a quantum many-body system and derive an expression that allows us to give a physical interpretation, for a thermal initial state, to all of the cumulants of the work in the case of quenched operators commuting with the unperturbed Hamiltonian. In the commuting case, the observables that we need to measure have an intuitive physical meaning. Conversely, in the noncommuting case, we show that, although it is possible to operate fully within the single-measurement framework irrespectively of the size of the quench, some difficulties are faced in providing a clear-cut physical interpretation to the cumulants. This circumstance makes the study of the physics of the system nontrivial and highlights the nonintuitive phenomenology of the emergence of thermodynamics from the fully quantum microscopic description. We illustrate our ideas with the example of the Ising model in a transverse field showing the interesting behavior of the high-order statistical moments of the work distribution for a generic thermal state and linking them to the critical nature of the model itself.
Resumo:
This paper presents a statistical model for the thermal behaviour of the line model based on lab tests and field measurements. This model is based on Partial Least Squares (PLS) multi regression and is used for the Dynamic Line Rating (DLR) in a wind intensive area. DLR provides extra capacity to the line, over the traditional seasonal static rating, which makes it possible to defer the need for reinforcement the existing network or building new lines. The proposed PLS model has a number of appealing features; the model is linear, so it is straightforward to use for predicting the line rating for future periods using the available weather forecast. Unlike the available physical models, the proposed model does not require any physical parameters of the line, which avoids the inaccuracies resulting from the errors and/or variations in these parameters. The developed model is compared with physical model, the Cigre model, and has shown very good accuracy in predicting the conductor temperature as well as in determining the line rating for future time periods.