506 resultados para Astrophysics.
Resumo:
We present mid-infrared (MIR) observations of the Type II-plateau supernova (SN) 2004et, obtained with the Spitzer Space Telescope between 64 and 1406 days past explosion. Late-time optical spectra are also presented. For the period 300-795 days past explosion, we argue that the spectral energy distribution (SED) of SN 2004et comprises (1) a hot component due to emission from optically thick gas, as well as free-bound radiation; (2) a warm component due to newly formed, radioactively heated dust in the ejecta; and (3) a cold component due to an IR echo from the interstellar-medium dust of the host galaxy, NGC 6946. There may also have been a small contribution to the IR SED due to free-free emission from ionized gas in the ejecta. We reveal the first-ever spectroscopic evidence for silicate dust formed in the ejecta of a supernova. This is supported by our detection of a large, but progressively declining, mass of SiO. However, we conclude that the mass of directly detected ejecta dust grew to no more than a few times 10(-4) M-circle dot. We also provide evidence that the ejecta dust formed in comoving clumps of fixed size. We argue that, after about two years past explosion, the appearance of wide, box-shaped optical line profiles was due to the impact of the ejecta on the progenitor circumstellar medium and that the subsequent formation of a cool, dense shell was responsible for a later rise in the MIR flux. This study demonstrates the rich, multifaceted ways in which a typical core-collapse supernova and its progenitor can produce and/or interact with dust grains. The work presented here adds to the growing number of studies that do not support the contention that SNe are responsible for the large mass of observed dust in high-redshift galaxies.
Resumo:
We present photometric and spectroscopic observations at optical and near-infrared wavelengths of the nearby type Ic supernova 2007gr. These represent the most extensive data-set to date of any supernova of this sub-type, with frequent coverage from shortly after discovery to more than one year post-explosion. We deduce a rise time to B-band maximum of 11.5 +/- 2.7 d. We find a peak B-band magnitude of M-B = -16.8, and light curves which are remarkably similar to the so-called "hypernova" SN 2002ap. In contrast, the spectra of SNe 2007gr and 2002ap show marked differences, not least in their respective expansion velocities. We attribute these differences primarily to the density profiles of their progenitor stars at the time of explosion i.e. a more compact star for SN 2007gr compared to SN 2002ap. From the quasi-bolometric light curve of SN 2007gr, we estimate that 0.076 +/- 0.010 M-circle dot of Ni-56 was produced in the explosion. Our near-infrared (IR) spectra clearly show the onset and disappearance of the first overtone of carbon monoxide (CO) between similar to 70 to 175 d relative to B-band maximum. The detection of the CO molecule implies that ionised He was not microscopically mixed within the carbon/oxygen layers. From the optical spectra, near-IR light curves, and colour evolution, we find no evidence for dust condensation in the ejecta out to about +400 d. Given the combination of unprecedented temporal coverage, and high signal-to-noise data, we suggest that SN 2007gr could be used as a template object for supernovae of this sub-class.
Resumo:
We present the first near-infrared Hubble diagram for Type II-P supernovae (SNe), to further explore their value as distance indicators. We use a modified version of the standardized candle method, which relies on the tight correlation between the absolute magnitudes of Type II-P SNe and their expansion velocities during the plateau phase. Although our sample contains only 12 II-P SNe and they are necessarily local (z
Resumo:
There is mounting observational evidence in favour of Luminous Blue Variables (LBVs) being the direct progenitors of supernovae. Here we present possibly the most convincing evidence yet for such progenitors. We find multiple absorption component P-Cygni profiles of hydrogen and helium in the spectrum of SN 2005gj, which we interpret as being an imprint of the progenitor's mass-loss history. Such profiles have previously only been detected in Luminous Blue Variables. This striking resemblance of the profiles, along with wind velocities and periods consistent with those of LBVs leads us to connect SN 2005gj to an LBV progenitor.
Resumo:
We present an extensive set of optical spectroscopy of the nearby type Ia supernova, SN 2002er, with 24 epochs spanning -11 to +34 days. Its spectral evolution is fairly typical of a type Ia supernova although it suffers high extinction. Nevertheless, there are differences in the spectral evolution when compared to coeval spectra of other normal type Ia supernova with comparable decline-rate parameters. Modelling of the photospheric phase spectra using a homogeneous abundance distribution in the atmosphere provides a fair match to the observations, but only by pushing the adopted distance and risetime close to the observational limits. Future improvements here will require models with a more realistic stratified abundance distribution. From simple modelling of a nebular spectrum obtained at +215 d, we infer a Ni-56 mass of 0.69 M-circle dot, consistent with that derived from the light curve.
Resumo:
We have developed a high-resolution combined physical and chemical model of a protoplanetary disk surrounding a typical T Tauri star. Our aims were to use our model to calculate the chemical structure of disks on small scales (submilliarcsecond in the inner disk for objects at the distance of Taurus, ~140 pc) to investigate the various chemical processes thought to be important in disks and to determine potential molecular tracers of each process. Our gas-phase network was extracted from the UMIST Database for Astrochemistry to which we added gas–grain interactions including freezeout and thermal and non-thermal desorption (cosmic-ray-induced desorption, photodesorption, and X-ray desorption), and a grain-surface network. We find that cosmic-ray-induced desorption has the least effect on our disk chemical structure while photodesorption has a significant effect, enhancing the abundances of most gas-phase molecules throughout the disk and affecting the abundances and distribution of HCN, CN, and CS, in particular. In the outer disk, we also see enhancements in the abundances of H2O and CO2. X-ray desorption is a potentially powerful mechanism in disks, acting to homogenize the fractional abundances of gas-phase species across the depth and increasing the column densities of most molecules, although there remain significant uncertainties in the rates adopted for this process. The addition of grain-surface chemistry enhances the fractional abundances of several small complex organic molecules including CH3OH, HCOOCH3, and CH3OCH3 to potentially observable values (i.e., a fractional abundance of greater than 10-11).
Resumo:
It is clear that ELTs will be able to detect extremely weak outgassing from Solar system bodies via a number of different methods. Occultations will allow probing for outgassing around 20 km main-belt asteroids. Imaging can reveal dust emission rates of only milligrams/second in the inner solar system, while sublimation rates of gasses should be measurable down to gram/second levels. Suitable targets will be identified via the coming all-sky surveys, through both the classical dynamical Tisserand Invariant and long-baseline lightcurves. It is possible that using these methods, ELTs may allow the discovery of much more activity throughout the Solar system than is presently known.
Resumo:
We present wide-field imaging of the 2007 outburst of Comet 17P/Holmes obtained serendipitously by SuperWASP-North on 17 nights over a 42-night period beginning on the night (2007 October 22-23) immediately prior to the outburst. Photometry of 17P's unresolved coma in SuperWASP data taken on the first night of the outburst is consistent with exponential brightening, suggesting that the rapid increase in the scattering cross-section of the coma could be largely due to the progressive fragmentation of ejected material produced on a very short time-scale at the time of the initial outburst, with fragmentation time-scales decreasing from tfrag ~ 2 × 103 to ~1 × 103 s over our observing period. Analysis of the expansion of 17P's coma reveals a velocity gradient suggesting that the outer coma was dominated by material ejected in an instantaneous, explosive manner. We find an expansion velocity at the edge of the dust coma of vexp = 0.55 +/- 0.02 kms -1 and a likely outburst date of t0 = 2007 October 23.3 +/- 0.3, consistent with our finding that the comet remained below SuperWASP's detection limit of mV ~ 15mag until at least 2007 October 23.3. Modelling of 17P's gas coma indicates that its outer edge, which was observed to extend past the outer dust coma, is best explained with a single pulse of gas production, consistent with our conclusions concerning the production of the outer dust coma.
Resumo:
Charge exchange (CE) plays a fundamental role in the collisions of solar- and stellar-wind ions with lunar and planetary exospheres, comets, and circumstellar clouds. Reported herein are absolute cross sections for single, double, triple, and quadruple CE of Feq+ (q = 5-13) ions with H2O at a collision energy of 7q keV. One measured value of the pentuple CE is also given for Fe9+ ions. An electron cyclotron resonance ion source is used to provide currents of the highly charged Fe ions. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental cross sections are compared with new results of the n-electron classical trajectory Monte Carlo approximation. The radiative and non-radiative cascades following electron transfers are approximated using scaled hydrogenic transition probabilities and scaled Auger rates. Also given are estimates of cross sections for single capture, and multiple capture followed by autoionization, as derived from the extended overbarrier model. These estimates are based on new theoretical calculations of the vertical ionization potentials of H2O up to H2O10+.
Resumo:
The Rapid Oscillations in the Solar Atmosphere (ROSA) instrument is a synchronized, six-camera high-cadence solar imaging instrument developed by Queen's University Belfast. The system is available on the Dunn Solar Telescope at the National Solar Observatory in Sunspot, New Mexico, USA, as a common-user instrument. Consisting of six 1k x 1k Peltier-cooled frame-transfer CCD cameras with very low noise (0.02 -aEuro parts per thousand 15 e s(-1) pixel(-1)), each ROSA camera is capable of full-chip readout speeds in excess of 30 Hz, or 200 Hz when the CCD is windowed. Combining multiple cameras and fast readout rates, ROSA will accumulate approximately 12 TB of data per 8 hours observing. Following successful commissioning during August 2008, ROSA will allow for multi-wavelength studies of the solar atmosphere at a high temporal resolution.
Resumo:
Magnetic bright points (MBPs) are among the smallest observable objects on the solar photosphere. A combination of G-band observations and numerical simulations is used to determine their area distribution. An automatic detection algorithm, employing one-dimensional intensity profiling, is utilized to identify these structures in the observed and simulated data sets. Both distributions peak at an area of approximate to 45,000 km(2), with a sharp decrease toward smaller areas. The distributions conform with log-normal statistics, which suggests that flux fragmentation dominates over flux convergence. Radiative magneto-convection simulations indicate an independence in the MBP area distribution for differing magnetic flux densities. The most commonly occurring bright point size corresponds to the typical width of inter-granular lanes.
Resumo:
We present the early UV and optical light curve of Type IIP supernova (SN) 2010aq at z = 0.0862, and compare it to analytical models for thermal emission following SN shock breakout in a red supergiant star. SN 2010aq was discovered in joint monitoring between the Galaxy Evolution Explorer (GALEX) Time Domain Survey (TDS) in the NUV and the Pan-STARRS1 Medium Deep Survey (PS1 MDS) in the g, r, i, and z bands. The GALEX and Pan-STARRS1 observations detect the SN less than 1 day after the shock breakout, measure a diluted blackbody temperature of 31,000 +/- 6000 K 1 day later, and follow the rise in the UV/optical light curve over the next 2 days caused by the expansion and cooling of the SN ejecta. The high signal-to-noise ratio of the simultaneous UV and optical photometry allows us to fit for a progenitor star radius of 700 +/- 200R(circle dot), the size of a red supergiant star. An excess in UV emission two weeks after shock breakout compared with SNe well fitted by model atmosphere-code synthetic spectra with solar metallicity is best explained by suppressed line blanketing due to a lower metallicity progenitor star in SN 2010aq. Continued monitoring of PS1 MDS fields by the GALEX TDS will increase the sample of early UV detections of Type II SNe by an order of magnitude and probe the diversity of SN progenitor star properties.
The death of massive stars - I. Observational constraints on the progenitors of Type II-P supernovae
Resumo:
We present the results of a 10.5-yr, volume-limited (28-Mpc) search for supernova (SN) progenitor stars. In doing so we compile all SNe discovered within this volume (132, of which 27 per cent are Type Ia) and determine the relative rates of each subtype from literature studies. The core-collapse SNe break down into 59 per cent II-P and 29 per cent Ib/c, with the remainder being IIb (5 per cent), IIn (4 per cent) and II-L (3 per cent). There have been 20 II-P SNe with high-quality optical or near-infrared pre-explosion images that allow a meaningful search for the progenitor stars. In five cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other twelve have no progenitor detected. We review and update all the available data for the host galaxies and SN environments (distance, metallicity and extinction) and determine masses and upper mass estimates for these 20 progenitor stars using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a Type II-P to form is m(min) = 8.5(-1.5)(+1) M-circle dot and the maximum mass for II-P progenitors is m(max) = 16.5 +/- 1.5 M-circle dot, assuming a Salpeter initial mass function holds for the progenitor population (in the range Gamma = -1.35(-0.7)(+0.3)). The minimum mass is consistent with current estimates for the upper limit to white dwarf progenitor masses, but the maximum mass does not appear consistent with massive star populations in Local Group galaxies. Red supergiants in the Local Group have masses up to 25 M-circle dot and the minimum mass to produce a Wolf-Rayet star in single star evolution (between solar and LMC metallicity) is similarly 25-30 M-circle dot. The reason we have not detected any high-mass red supergiant progenitors above 17 M-circle dot is unclear, but we estimate that it is statistically significant at 2.4 sigma confidence. Two simple reasons for this could be that we have systematically underestimated the progenitor masses due to dust extinction or that stars between 17-25 M-circle dot produce other kinds of SNe which are not II-P. We discuss these possibilities and find that neither provides a satisfactory solution. We term this discrepancy the 'red supergiant problem' and speculate that these stars could have core masses high enough to form black holes and SNe which are too faint to have been detected. We compare the Ni-56 masses ejected in the SNe to the progenitor mass estimates and find that low-luminosity SNe with low Ni-56 production are most likely to arise from explosions of low-mass progenitors near the mass threshold that can produce a core-collapse.
Resumo:
Aims. We use magnetic and non-magnetic 3D numerical simulations of solar granulation and G-band radiative diagnostics from the resulting models to analyse the generation of small-scale vortex motions in the solar photosphere.
Methods. Radiative MHD simulations of magnetoconvection are used to produce photospheric models. Our starting point is a non-magnetic model of solar convection, where we introduce a uniform magnetic field and follow the evolution of the field in the simulated photosphere. We find two different types of photospheric vortices, and provide a link between the vorticity generation and the presence of the intergranular magnetic field. A detailed analysis of the vorticity equation, combined with the G-band radiative diagnostics, allows us to identify the sources and observational signatures of photospheric vorticity in the simulated photosphere.
Results. Two different types of photospheric vorticity, magnetic and non-magnetic, are generated in the domain. Non-magnetic vortices are generated by the baroclinic motions of the plasma in the photosphere, while magnetic vortices are produced by the magnetic tension in the intergranular magnetic flux concentrations. The two types of vortices have different shapes. We find that the vorticity is generated more efficiently in the magnetised model. Simulated G-band images show a direct connection between magnetic vortices and rotary motions of photospheric bright points, and suggest that there may be a connection between the magnetic bright point rotation and small-scale swirl motions observed higher in the atmosphere.
Resumo:
The expansion of a dense plasma through a more rarefied ionized medium is a phenomenon of interest in various physics environments ranging from astrophysics to high energy density laser-matter laboratory experiments. Here this situation is modeled via a one-dimensional particle-in-cell simulation; a jump in the plasma density of a factor of 100 is introduced in the middle of an otherwise equally dense electron-proton plasma with an uniform proton and electron temperature of 10 eV and 1 keV, respectively. The diffusion of the dense plasma, through the rarefied one, triggers the onset of different nonlinear phenomena such as a strong ion-acoustic shock wave and a rarefaction wave. Secondary structures are detected, some of which are driven by a drift instability of the rarefaction wave. Efficient proton acceleration occurs ahead of the shock, bringing the maximum proton velocity up to 60 times the initial ion thermal speed. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3469762]