269 resultados para Alkaline ions
Resumo:
We investigate the angular correlations between the photons emitted in the dielectronic recombination (DR) of initially hydrogenlike heavy ions. The theoretical analysis is performed based on a density-matrix approach and Dirac's relativistic theory. Special emphasis has been placed upon the effects of the higher-order, nondipole terms in the expansion of the electron-photon interaction. To illustrate these effects, we present and discuss detailed calculations for K-LL DR of initially hydrogenlike xenon, gold, and uranium. These computations show that the angular correlations are significantly affected by interference between the leading electric-dipole (E1) and the magnetic-quadrupole (M2) transitions.
Resumo:
Recent experimental advances in light technology necessitate the availability of sophisticated theoretical models which can incorporate an accurate treatment of double-electron continua. We describe here a new intermediate-energy R-matrix approach to photoionisation and photo-double-ionisation and illustrate its feasibilty by application to photoionisation and photo-double-ionisation of He, and photodetachment and photo-double-detachment of H-. Results are shown to be in excellent agreement with previous theoretical and experimental studies. This work is a key step in the development of a multipurpose R-matrix code for multiple-electron ejection. © 2012 American Physical Society
Resumo:
An 18.2 kDa protein from the liver fluke, Fasciola hepatica has been identified and characterised. The protein shows strongest sequence similarity to egg antigen proteins from Schistosoma mansoni, Schistosoma japonicum and Clonorchis sinensis. The protein is predicted to adopt a calmodulin-like fold; it thus represents the third calmodulin-like protein to be characterised in F. hepatica and has been named FhCaM3. Compared to the classical calmodulin structure there are some variations. Most noticeably, the central, linker helix is disrupted by a cysteine residue. Alkaline native gel electrophoresis showed that FhCaM3 binds calcium ions. This binding event increases the ability of the protein to bind the hydrophobic fluorescent probe 8-anilinonaphthalene-1-sulphonate, consistent with an increase in surface hydrophobicity as seen in other calmodulins. FhCaM3 binds to the calmodulin antagonists trifluoperazine and W7, but not to the myosin regulatory light chain binding compound praziquantel. Immunolocalisation demonstrated that the protein is found in eggs and vitelline cells. Given the critical role of calcium ions in egg formation and hatching this suggests that FhCaM3 may play a role in calcium signalling in these processes. Consequently the antagonism of FhCaM3 may, potentially, offer a method for inhibiting egg production and thus reducing the spread of infection.
Resumo:
Fluorescence yields are reported for 3lnl' Rydberg series members in He-like ions of N, O and Ne. Results are presented for singlet series members with n values between 3 and 9, i.e. up to the region of overlap with the states belonging to the 4l4l' manifold in these atoms. This data is required, for example, for the interpretation of charge-exchange experiments involving bare N, O and Ne nuclei. Fluorescence yields, averaged over all 3lnl' singlet states, larger than 50% are obtained from about n = 7.
Resumo:
The R-matrix Floquet approach is applied to study the negative F and Cl ions in a light field. Detachment rates are obtained for detachment processes involving up to three photons. The results obtained in the present approach are compared to other experimental and theoretical results. For two- and three-photon processes reasonable agreement with other calculations has been found, while for two-photon detachment the results agree with the experimental cross sections. The three-photon results are in less good agreement with experiment although the larger error bars make accurate comparisons more difficult. The changes in the detachment behaviour for these ions are compared to each other as well as to the detachment behaviour of H.
Resumo:
The electronic redistribution of an ion or atom induced by a sudden recoil of the nucleus occurring during the emission or capture of a neutral particle is theoretically investigated. For one-electron systems, analytical expressions are derived for the electronic transition probabilities to bound and continuum states. The quality of a B-spline basis set approach is evaluated from a detailed comparison with the analytical results. This numerical approach is then used Io study the dynamics of two-electron systems (neutral He and Ne ) using correlated wavefunctions for both the target and daughter ions. The total transition probabilities to discrete states, autoionizing states and direct single- and double-ionization probabilities are calculated from the pseudospectra. Sum rules for transition probabilities involving an initial bound state and a complete final series are discussed.
Resumo:
In order to study ultracold charge-transfer processes in hybrid atom-ion traps, we have mapped out the potential-energy curves and molecular parameters for several low-lying states of the Rb, Yb+ system. We employ both a multireference configuration interaction and a full configuration interaction (FCI) approach. Turning points, crossing points, potential minima, and spectroscopic molecular constants are obtained for the lowest five molecular states. Long-range parameters, including the dispersion coefficients, are estimated from our ab initio data. The separated-atom ionization potentials and atomic polarizability of the ytterbium atom (ad=128.4 atomic units) are in good agreement with experiment and previous calculations. We present some dynamical calculations for (adiabatic) scattering lengths for the two lowest (Yb, Rb+) channels that were carried out in our work. However, we find that the pseudopotential approximation is rather limited in validity and only applies to nK temperatures. The adiabatic scattering lengths for both the triplet and singlet channels indicate that both are large and negative in the FCI approximation.
Resumo:
The M17 leucine aminopeptidase of the intraerythrocytic stages of the malaria parasite Plasmodium falciparum (PfLAP) plays a role in releasing amino acids from host hemoglobin that are used for parasite protein synthesis, growth, and development. This enzyme represents a target at which new antimalarials could be designed since metalloaminopeptidase inhibitors prevent the growth of the parasites in vitro and in vivo. A study on the metal ion binding characteristics of recombinant P. falciparum M17 leucine aminopeptidase (rPfLAP) shows that the active site of this exopeptidase contains two metal-binding sites, a readily exchangeable site (site 1) and a tight binding site (site 2). The enzyme retains activity when the metal ion is removed from site 1, while removal of metal ions from both sites results in an inactive apoenzyme that cannot be reactivated by the addition of divalent metal cations. The metal ion at site 1 is readily exchangeable with several divalent metal ions and displays a preference in the order of preference Zn(2+) > Mn(2+) > Co(2+) > Mg(2+). While it is likely that native PfLAP contains a Zn(2+) in site 2, the metal ion located in site 1 may be dependent on the type and concentration of metal ions in the cytosolic compartment of the parasite. Importantly, the type of metal ion present at site 1 influences not only the catalytic efficiency of the enzyme for peptide substrates but also the mode of binding by bestatin, a metal-chelating inhibitor of M17 aminopeptidases with antimalarial activity.
Resumo:
Background: In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis.
Results: Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress.
Conclusions: Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli.