206 resultados para Alkaline cement
Resumo:
Carbon (C) and nitrogen (N) stable isotope analysis (SIA) has been used to identify the terrestrial subsidy of freshwater food webs. However, SIA fails to differentiate between the contributions of old and recently fixed terrestrial C and consequently cannot fully determine the source, age, and biochemical quality of terrestrial carbon. Natural abundance radiocarbon (∆14C) was used to examine the age and origin of carbon in Lower Lough Erne, Northern Ireland. 14C and stable isotope values were obtained from invertebrate, algae, and fish samples, and the results indicate that terrestrial organic C is evident at all trophic levels. High winter δ15N values in calanoid zooplankton (δ15N = 24‰) relative to phytoplankton and particulate organic matter (δ15N = 6‰ and 12‰, respectively) may reflect several microbial trophic levels between terrestrial C and calanoid invertebrates. Winter and summer calanoid ∆14C values show a seasonal switch between autochthonous and terrestrial carbon sources. Fish ∆14C values indicate terrestrial support at the highest trophic levels in littoral and pelagic food webs. 14C therefore is useful in attributing the source of carbon in freshwater in addition to tracing the pathway of terrestrial carbon through the food web.
Resumo:
Aesthetics of concrete structures is directly related to the quality of their surface finish. The objective of this investigation was to examine the effect of rheological properties of cement-based mortars on the quality of their surface finish. The study was divided into two phases. Firstly, the influence of the mix composition of mortars, viz. the water to cement (w/c) ratio, the sand content and the superplasticiser (SP) dosage on their rheology was evaluated. Secondly, the surface finish quality was characterised and related to the rheology of the studied systems. Rheology of these materials, i.e. the yield value, was measured using a vane viscometer. The quality of the surface finish was assessed by quantification of the surface air voids by analysing digital photographs of the mould finished sample surfaces. It was found that an increase in the w/c ratio and the SP content decreased the yield value, whilst the increase in the sand content had an opposite effect. When the surface quality is concerned, an increase in the yield value was found to increase the total content of the surface air voids and especially those with size smaller than 1 mm in diameter. Moreover, the analysis of the location of the surface air voids along the height of the sample revealed that with the increase in the yield value their concentration was higher in the bottom section of the analysed samples.
Resumo:
Objectives: To quantify variability in hand proportioning of zinc phosphate cement among a cohort of dental undergraduates and to determine the effect of any such variability on the diametral tensile strength (DTS) of the set cement. The null hypothesis was that such variability has no effect on DTS.
Methods: Thirty-four operators dispensed a zinc phosphate cement [Fleck's® Cement] according to the manufacturers' instructions. The mass of powder and liquid dispensed was recorded. Cylindrical specimens (n = 2 x 34) of dimensions 6mm x 3mm were prepared using a stainless steel split mould. The maximum mass of powder and the minimum volume of liquid were used as one extreme ratio and the minimum mass of powder and the maximum volume of liquid used on the other extreme. The manufacturers' recommended ratio was also tested (n=34).The samples were left to set for one hour before being transferred into distilled water for 48 hours. Compression across a diameter was carried out using a universal testing machine, H10KS [Tinius Olsen], at a constant crosshead speed of 0.75 ±0.25 mm/min. Statistical analyses (α = 0.05) were by Student's t-test for the powder/liquid ratio and one-way ANOVA and Tukey HSD for for pair-wise comparisons of mean DTS. Tests were carried out for normality and constant variability.
Results: The mean (range) amount of powder dispensed was 0.863g (0.531-1.216)g. The mean (range) amount of liquid dispensed was 0.341ml (0.265-0.394)ml. The manufacturer's recommended amounts were 0.8g of powder and 0.3ml of liquid. The mean powder/liquid ratio was not significantly different from the manufacturer's recommended value (p=0.64). Mean (SD) DTS were (MPa) max: 7.19(1.50), min: 2.65(1.01), manufacturer: 6.01(1.30). All pair-wise comparisons were significantly different (p<0.001).
Conclusions: Variability exists in the hand proportioning powder and liquid components of zinc phosphate cement. This variability can affect the DTS of zinc phosphate cement.
Resumo:
We present a pilot study that uses the radiocarbon (∆14C) method to determine the source of carbon buried in the surface sediment of Lough Erne, a humic, alkaline lake in northwest Ireland. ∆14C, δ13C and δ15N values were measured from phytoplankton, dissolved inorganic, dissolved organic and particulate organic carbon. A novel radiocarbon method, Stepped Combustion1 was used to estimate the degree of the burial of terrestrial carbon in surface sediment. The ∆14C values of the low temperature fractions were comparable to algal ∆14C, while the high temperature fractions were 14C-depleted (older than bulk sediment). The ∆14C end-member model indicated that ~64% of carbon in surface sediment was derived from detrital terrestrial carbon. The use of ∆14C in conjunction with stepped combustion allows the quantification of the pathways of terrestrial carbon in the system, which has implications for regional and global carbon burial.
1McGeehin, J., Burr, G.S., Jull, A.J.T., Reines, D., Gosse, J., Davis, P.T., Muhs, D., and Southon, J.R., 2001, Stepped-combustion C-14 dating of sediment: A comparison with established techniques: Radiocarbon, v. 43, p. 255-261.
Resumo:
The alkali activation of waste products has become a widespread topic of research, mainly due to environmental benefits. Portland cement and alkali-activated mortar samples were prepared to compare their resistance to silage effluent which contains lactic acid. The mechanism of attack on each sample has also been investigated.
Resumo:
Worldwide, the building sector requires the production of 4 billion tonnes of cement annually, consuming more than 40% of global energy. Alkali activated “cementless” binders have recently emerged as a novel eco-friendly construction material with a promising potential to replace ordinary Portland cement. These binders consist of a class of inorganic polymer formed mainly by the reaction between an alkaline solution and an aluminosilicate source. Precursor materials for this reaction can be found in secondary material streams from different industrial sectors, from energy to agro-alimentary. However, the suitability of these materials in developing the polymerisation reaction must be assessed through a detailed chemical and physical characterisation, ensuring the availability of required chemical species in the appropriate quantity and physical state. Furthermore, the binder composition needs to be defined in terms of proper alkali activation dosages, water content in the mix, and curing conditions. The mix design must satisfy mechanical requirements and compliance to desired engineering properties (workability, setting time) for ensuring the suitability of the binder in replacing Portland cement in concrete applications. This paper offers a structured approach for the development of secondary material-based binders, from their identification to mix design and production procedure development. Essential features of precursor material can be determined through chemical and physical characterisation methods and advanced microscope techniques. Important mixing parameters and binder properties requirements are examined and some examples of developed binders are reported.
Resumo:
One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of 90Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that 90Sr is stable when it substitutes the Ca2+ ions in C-S-H, and so is its daughter nucleus 90Y after β-decay. Interestingly, 90Zr, daughter of 90Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for 90Sr storage.