211 resultados para short stature
Resumo:
Here we consider the numerical optimization of active surface plasmon polariton (SPP) trench waveguides suited for integration with luminescent polymers for use as highly localized SPP source devices in short-scale communication integrated circuits. The numerical analysis of the SPP modes within trench waveguide systems provides detailed information on the mode field components, effective indices, propagation lengths and mode areas. Such trench waveguide systems offer extremely high confinement with propagation on length scales appropriate to local interconnects, along with high efficiency coupling of dipolar emitters to waveguided plasmonic modes which can be close to 80%. The large Purcell factor exhibited in these structures will further lead to faster modulation capabilities along with an increased quantum yield beneficial for the proposed plasmon-emitting diode, a plasmonic analog of the light-emitting diode. The confinement of studied guided modes is on the order of 50 nm and the delay over the shorter 5 μm length scales will be on the order of 0.1 ps for the slowest propagating modes of the system, and significantly less for the faster modes.
Resumo:
An ultra-relativistic electron beam passing through a thick, high-Z solid target triggers an electromagnetic cascade, whereby a large number of high energy photons and electron-positron pairs are produced. By exploiting this physical process, we present here the first experimental evidence of the generation of ultra-short, highly collimated and ultra-relativistic positron beams following the interaction of a laser-wake field accelerated electron beam with high-Z solid targets. Clear evidence has also been obtained of the generation of GeV electron-positron jets with variable composition depending on the solid target material and thickness. The percentage of positrons in the overall leptonic beam has been observed to vary from a few per cent up to almost fifty per cent, implying a quasi-neutral electron-positron beam. We anticipate that these beams will be of direct relevance to the laboratory study of astrophysical leptonic jets and their interaction with the interstellar medium.
Resumo:
BACKGROUND: The month of diagnosis in childhood type 1 diabetes shows seasonal variation.
OBJECTIVE: We describe the pattern and investigate if year-to-year irregularities are associated with meteorological factors using data from 50 000 children diagnosed under the age of 15 yr in 23 population-based European registries during 1989-2008.
METHODS: Tests for seasonal variation in monthly counts aggregated over the 20 yr period were performed. Time series regression was used to investigate if sunshine hour and average temperature data were predictive of the 240 monthly diagnosis counts after taking account of seasonality and long term trends.
RESULTS: Significant sinusoidal pattern was evident in all but two small centers with peaks in November to February and relative amplitudes ranging from ±11 to ±38% (median ±17%). However, most centers showed significant departures from a sinusoidal pattern. Pooling results over centers, there was significant seasonal variation in each age-group at diagnosis, with least seasonal variation in those under 5 yr. Boys showed greater seasonal variation than girls, particularly those aged 10-14 yr. There were no differences in seasonal pattern between four 5-yr sub-periods. Departures from the sinusoidal trend in monthly diagnoses in the period were significantly associated with deviations from the norm in average temperature (0.8% reduction in diagnoses per 1 °C excess) but not with sunshine hours.
CONCLUSIONS: Seasonality was consistently apparent throughout the period in all age-groups and both sexes, but girls and the under 5 s showed less marked variation. Neither sunshine hour nor average temperature data contributed in any substantial way to explaining departures from the sinusoidal pattern.
Resumo:
Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed.
Resumo:
This paper presents a novel analysis of the utilisation of small grid scale energy storage to mitigate negative system operational impacts due to high penetrations of wind power. This was investigated by artificially lowering the minimum stable generation level of a gas thermal generating unit coupled to a storage device over a five hour storage charging window using a unit commitment and economic dispatch model. The key findings of the analysis were a 0.18% reduction in wind curtailment, a 2.35 MW/min reduction in the ramping rate required to be met by all generators in the test system during a representative period and a total generation cost reduction of €6.5 million.
Resumo:
Using low-energy electron-diffraction (LEED) formalism, we demonstrate theoretically that LEED I-V spectra are characterized mainly by short-range order. We also show experimentally that diffuse LEED (DLEED) I-V spectra can be accurately measured from a disordered system using a video-LEED system even at very low coverage. These spectra demonstrate that experimental DLEED I-V spectra from disordered systems may be used to determine local structures. As an example, it is shown that experimental DLEED I-V spectra from K/Co {1010BAR} at potassium coverages of 0.07, 0.1, and 0.13 monolayer closely resemble calculated and experimental LEED I-V spectra for a well-ordered Co{1010BAR}-c(2X2)-K superstructure, leading to the conclusion that at low coverages, potassium atoms are located in the fourfold-hollow sites and that there is no large bond-length change with coverage.
Resumo:
The applicability of ultra-short-term wind power prediction (USTWPP) models is reviewed. The USTWPP method proposed extracts featrues from historical data of wind power time series (WPTS), and classifies every short WPTS into one of several different subsets well defined by stationary patterns. All the WPTS that cannot match any one of the stationary patterns are sorted into the subset of nonstationary pattern. Every above WPTS subset needs a USTWPP model specially optimized for it offline. For on-line application, the pattern of the last short WPTS is recognized, then the corresponding prediction model is called for USTWPP. The validity of the proposed method is verified by simulations.
Resumo:
Price declines over the previous quarter lead to stronger reversals across the subsequent two months. We explain this finding based on the dual notions that liquidity provision can influence reversals, and agents that act as de facto liquidity providers may be less active in past losers. Supporting these observations, we find that active institutions participate less in losing stocks, and that the magnitude of monthly return reversals fluctuates with changes in the number of active institutional investors. Thus, we argue that fluctuations in liquidity provision with past return performance accounts for the link between return reversals and past returns.
Resumo:
The microstructural evolution during short-term (up to 3000 hours) thermal exposure of three 9/12Cr heat-resistant steels was studied, as well as the mechanical properties after exposure. The tempered martensitic lath structure, as well as the precipitation of carbide and MX type carbonitrides in the steel matrix, was stable after 3000 hours of exposure at 873 K (600 °C). A microstructure observation showed that during the short-term thermal exposure process, the change of mechanical properties was caused mainly by the formation and growth of Laves-phase precipitates in the steels. On thermal exposure, with an increase of cobalt and tungsten contents, cobalt could promote the segregation of tungsten along the martensite lath to form Laves phase, and a large size and high density of Laves-phase precipitates along the grain boundaries could lead to the brittle intergranular fracture of the steels.
Resumo:
As a consequence of increased levels of flooding, largely attributable to urbanization of watersheds (and perhaps climate change, more frequent extreme rainfall events are occurring and threatening existing critical infrastructure. Many of which are short-span bridges over relatively small waterways (e.g., small rivers, streams and canals). Whilst these short-span bridges were designed, often many years ago, to pass relatively minor the then standard return-period floods, in recenttimes the failure incidence of such short-span bridges has been noticeably increasing. This is suggestive of insufficient hydraulic capacity or alternative failure mechanism not envisaged at the time of design e.g. foundation scour or undermining. This paper presen ts, and draws lessons, from bridge failures in Ireland and the USA. For example, in November 2009, the UK and Ireland were subjected to extraordinarily severe weather conditions for several days. The resulting flooding led to the collapse of three UK bridges that were generally 19th century masonry arch bridges, withrelatively shallow foundations. Parallel failure events have been observed in the USA. To date, knowledge of the combined effect of waterway erosion, bridge submergence, and geotechnical collapse has not been adequately studied. Recent research carried out considered the hydraulic analysis of short span bridges under flood conditions, but no consideration was given towards the likely damage to these structures due to erosive coupling of hydraulic and geotechnical factors. Some work has been done to predict the discharge downstream of an inundated arch, focusing onpredicting afflux, as opposed to bridge scour, under both pressurized and free-surface flows, but no ! predictive equation for scour under pressurized conditions was ever considered. The case studies this paper presents will be augmented by the initial findings from the laboratory experiments investigating the effects of surcharged flow and subsequent scour within the vicinity of single span arch bridges. Velocities profiles will be shown within the vicinity of the arch, in addition to the depth of consequent scour, for a series of flows and model spans. The data will be presented and correlated to the most recent predictive equations for submerged contraction and abutment scour. The accuracy of these equations is examined, and the findings used as a basis for developing further studies in relation to short span bridges.
Resumo:
The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a similar to 3 ns duration neutron pulse with 10(4) n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. This neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.
Resumo:
RATIONALE: Anaerobic bacteria are present in large numbers in the airways of people with cystic fibrosis (PWCF). In the gut, anaerobes produce short-chain fatty acids (SCFAs) that modulate immune/inflammatory processes.
OBJECTIVES: To investigate the capacity of anaerobes to contribute to CF airway pathogenesis via SCFAs.
METHODS: Samples from 109 PWCF were processed using anaerobic microbiological culture with bacteria present identified by 16S RNA sequencing. SCFAs levels in anaerobe supernatants and bronchoalveolar lavage (BAL) were determined by gas chromatography. The mRNA and/or protein expression of SCFAs receptors, GPR41 and GPR43, in CF and non-CF bronchial brushings, and 16HBE14o- and CFBE41o- cells were evaluated using RT-PCR, western blot, laser scanning cytometry and confocal microscopy. SCFAs-induced IL-8 secretion was monitored by ELISA.
MEASUREMENTS AND MAIN RESULTS: Fifty seven of 109 (52.3%) PWCF were anaerobe-positive. Prevalence increased with age, from 33.3% to 57.7% in PWCF under (n=24) and over 6 years (n=85). All evaluated anaerobes produced millimolar concentrations of SCFAs, including acetic, propionic and butyric acid. SCFAs levels were higher in BAL samples from adults than children. GPR41 levels were elevated in; CFBE41o- versus 16HBE14o- cells; CF versus non-CF bronchial brushings; 16HBE14o- cells after treatment with CFTR inhibitor CFTR(inh)-172, CF BAL, or inducers of endoplasmic reticulum stress. SCFAs induced a dose-dependent and pertussis toxin-sensitive IL-8 response in bronchial epithelial cells with a higher production of IL-8 in CFBE41o- than 16HBE14o- cells.
CONCLUSIONS: This study illustrates that SCFAs contribute to excessive production of IL-8 in CF airways colonized with anaerobes via upregulated GPR41.