211 resultados para laser-plasma acceleration, Gaussian pulse, motion of charged particle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proton radiography using laser-driven sources has been developed as a diagnostic since the beginning of the decade, and applied successfully to a range of experimental situations. Multi-MeV protons driven from thin foils via the Target Normal Sheath Acceleration mechanism, offer, under optimal conditions, the possibility of probing laser-plasma interactions, and detecting electric and magnetic fields as well as plasma density gradients with similar to ps temporal resolution and similar to 5-10 mu m spatial resolution. In view of these advantages, the use of proton radiography as a diagnostic in experiments of relevance to Inertial Confinement Fusion is currently considered in the main fusion laboratories. This paper will discuss recent advances in the application of laser-driven radiography to experiments of relevance to Inertial Confinement Fusion. In particular we will discuss radiography of hohlraum and gasbag targets following the interaction of intense ns pulses. These experiments were carried out at the HELEN laser facility at AWE (UK), and proved the suitability of this diagnostic for studying, with unprecedented detail, laser-plasma interaction mechanisms of high relevance to Inertial Confinement Fusion. Non-linear solitary structures of relevance to space physics, namely phase space electron holes, have also been highlighted by the measurements. These measurements are discussed and compared to existing models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A linear theory for intermediate-frequency [much smaller (larger) than the electron gyrofrequency (dust plasma and dust gyrofrequencies)], long wavelength (in comparison with the ion gyroradius and the electron skin depth) electromagnetic waves in a multicomponent, homogeneous electron-ion-dust magnetoplasma is presented. For this purpose, the generalized Hall-magnetohydrodynamic (GH-MHD) equations are derived for the case with immobile charged dust macroparticles. The GH-MHD equations in a quasineutral plasma consist of the ion continuity equation, the generalized ion momentum equation, and Faraday's law with the Hall term. The GH-MHD equations are Fourier transformed and combined to obtain a general dispersion relation. The latter is analyzed to understand the influence of immobile charged dust grains on various electromagnetic wave modes in a magnetized dusty plasma. (C) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dusty plasma crystalline configuration consisting of charged dust grains of alternating charge sign (.../+/-/+/-/+/...) and mass is considered. Both charge and mass of each dust species are taken to be constant. Considering the equations of longitudinal motion, a dispersion relation for linear longitudinal vibrations is derived from first principles and then analyzed. Two harmonic modes are obtained, namely, an acoustic mode and an inverse-dispersive optic-like one. The nonlinear aspects of acoustic longitudinal dust grain motion are addressed via a generalized Boussinesq (and, alternatively, a generalized Korteweg-de Vries) description. (C) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-driven coherent extreme-ultraviolet (XUV) sources provide pulses lasting a few hundred attoseconds(1,2), enabling real-time access to dynamic changes of the electronic structure of matter(3,4), the fastest processes outside the atomic nucleus. These pulses, however, are typically rather weak. Exploiting the ultrahigh brilliance of accelerator-based XUV sources(5) and the unique time structure of their laser-based counterparts would open intriguing opportunities in ultrafast X-ray and high-field science, extending powerful nonlinear optical and pump-probe techniques towards X-ray frequencies, and paving the way towards unequalled radiation intensities. Relativistic laser-plasma interactions have been identified as a promising approach to achieve this goal(6-13). Recent experiments confirmed that relativistically driven overdense plasmas are able to convert infrared laser light into harmonic XUV radiation with unparalleled efficiency, and demonstrated the scalability of the generation technique towards hard X-rays(14-19). Here we show that the phases of the XUV harmonics emanating from the interaction processes are synchronized, and therefore enable attosecond temporal bunching. Along with the previous findings concerning energy conversion and recent advances in high-power laser technology, our experiment demonstrates the feasibility of confining unprecedented amounts of light energy to within less than one femtosecond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma cell polyps of the vocal fold (plasma cell granulomas) are rare inflammatory polyps of the larynx. They should be included in the clinical and histological differential diagnosis of laryngeal polyps. Histologically they are polyclonal aggregates of plasma cells. It is essential to distinguish them from monoclonal, neoplastic plasma cell proliferations. The treatment of choice is surgical resection, although radiotherapy, laser ablation, antibiotics and steroids have been used successfully. We present a case of plasma cell granuloma presenting as a vocal fold polyp, treated surgically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expansion of a dense plasma through a more rarefied ionized medium has been studied by means of two-dimensional particle-in-cell simulations. The initial conditions involve a density jump by a factor of 100, located in the middle of an otherwise equally dense electron-proton plasma with uniform proton and electron temperatures of 10 eV and 1 keV, respectively. Simulations show the creation of a purely electrostatic collisionless shock together with an ion-acoustic soliton tied to its downstream region. The shock front is seen to evolve in filamentary structures consistently with the onset of the ion-ion instability. Meanwhile, an un-magnetized drift instability is triggered in the core part of the dense plasma. Such results explain recent experimental laser-plasma experiments, carried out in similar conditions, and are of intrinsic relevance to non-relativistic shock scenarios in the solar and astrophysical systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributions of source intensity in two dimensions (designated the source model), averaged over a single laser pulse, based on experimental measurements of spatial coherence, are considered for radiation from the unresolved 23.2/23.6 nm spectral lines from the germanium collisional X-ray laser. The model derives from measurements of the visibility of Young slit interference fringes determined by a method based on the Wiener-Khinchin theorem. Output from amplifiers comprising three and four target elements have similar coherence properties in directions within the horizontal plane corresponding to strong plasma refraction effects and fitting the coherence data shows source dimensions (FWHM) are similar to 26 mu m (horizontal), significantly smaller than expected by direct imaging, and similar to 125 mu m (vertical: equivalent to the height of the driver excitation). (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a systematic study of double pulse pumping of the Ni-like Sm x-ray laser at 73 Angstrom, currently the shortest wavelength saturated x-ray laser. It is found that the Sm x-ray laser output can change by orders of magnitude when the intensity ratio of the pumping pulses and their relative delay are varied. Optimum pumping conditions are found and interpreted in terms of a simple model. (C) 1999 American Institute of Physics. [S0021-8979(99)07102-9].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of schemes involving multiple laser pulses to enhance and control the properties of beams of protons accelerated in ultra-intense laser irradiation of planar foil targets is discussed. Specifically, the schemes include the use of a second laser pulse to produce and control preplasma expansion of the target to enhance energy coupling to the proton beam; the use of a second laser pulse to drive shock deformation of the target to change the direction of the proton beam; and a scheme involving dual high intensity laser pulses to change the properties of the sheath field, with the aim of modifying the proton energy spectrum. An overview of our recent experimental and theoretical results is given. The overall aim of this work is to determine the extent to which the properties of the sheath-accelerated proton beam can be optically controlled, to enable beam delivery at high repetition rates. To cite this article: D.C. Carroll et al., C. R. Physique 10 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of high harmonics created during the interaction of a 2.5 ps, 1053 nm laser pulse with a solid target has been recorded for intensities up to 10(19) W cm(-2). Harmonic orders up to the 68th at 15.5 nm in first order have been observed with indications up to the 75th at 14.0 nm in second-order diffraction. No differences in harmonic emission between s and p polarization of the laser beam were observed. The power of the 38th high harmonic at 27.7 nm is estimated to be 24 MW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a PW (0.5 ps/500J) laser system to demonstrate fast heating of imploded core plasmas using a hollow cone shell target. Significant enhancement of thermal neutron yield has been realized with PW-laser heating, confirming that the high heating efficiency is maintained as the short-pulse laser power is substantially increased to a value nearly equivalent to the ignition condition. It appears that the efficient heating is realized by the guiding of the PW laser pulse energy within the hollow cone and by self-organized relativistic electron transport. Based on the experimental results, we are developing a 10kJ-PW laser system to study the fast heating physics of high-density plasmas at an ignition-equivalent temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma mirrors are devices capable of switching very high laser powers on subpicosecond time scales with a dynamic range of 20–30 dB. A detailed study of their performance in the near-field of the laser beam is presented, a setup relevant to improving the pulse contrast of modern ultrahigh power lasers ~TW–PW!. The conditions under which high reflectivity can be achieved and focusability of the reflected beam retained are identified. At higher intensities a region of high specular reflectivity with rapidly decreasing focusability was observed, suggesting that specular reflectivity alone is not an adequate guide to the ideal range of plasma mirror operation. It was found that to achieve high reflectivity with negligible phasefront distortion of the reflected beam the inequality csDt,lLaser must be met (cs : sound speed, Dt: time from plasma formation to the peak of the pulse!. The achievable contrast enhancement is given by the ratio of plasma mirror reflectivity to cold reflectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present images of the source of extreme ultraviolet (XUV) harmonic emission at a wavelength of 220 Angstrom from the interaction of a 20 TW, 1.053 mu m Nd:glass laser beam focused to intensities up to 4x10(18) W cm(-2) onto a solid target. From these measurements we determine an upper limit to the source size and brightness of the harmonic emission to show its efficacy as a novel source of short-pulse, coherent XUV radiation. We also demonstrate the empirical scaling of the harmonic generation efficiency with irradiance up to 10(19) W mu m(2) cm(-2), and extrapolate to estimate the possible source brightness at higher irradiances. These source brightnesses are compared to those available from an x-ray laser system. (C) 1997 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper and its companion paper describe the comparison between a one-dimensional theoretical model of a hydrogen discharge in a magnetic multipole plasma source and experimental measurements of the plasma parameters. The discharge chamber, described here, has been designed to produce significant densities of H- ions by incorporating a weak transverse field through the discharge to obtain electron cooling so as to maximize H- production. Langmuir probes are used to monitor the plasma, determining the ion density, the electron density and temperature and the plasma potential. The negative density is measured by photo-detachment of the extra electron using an intense laser beam. The model, described in the companion paper, uses the presented source geometry to calculate these plasma quantities as a function of the major are parameters; namely the are current and voltage and gas pressure. Good agreement is obtained between theory and experiment as a function of position and arc parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser induced acoustic desorption (LIAD) has been used for the first time to study the parent ion production and fragmentation mechanisms of a biological molecule in an intense femtosecond (fs) laser field. The photoacoustic shock wave generated in the analyte substrate (thin Ta foil) has been simulated using the hydrodynamic HYADES code, and the full LIAD process has been experimentally characterised as a function of the desorption UV-laser pulse parameters. Observed neutral plumes of densities > 10(9) cm(-3) which are free from solvent or matrix contamination demonstrate the suitability and potential of the source for studying ultrafast dynamics in the gas phase using fs laser pulses. Results obtained with phenylalanine show that through manipulation of fundamental femtosecond laser parameters (such as pulse length, intensity and wavelength), energy deposition within the molecule can be controlled to allow enhancement of parent ion production or generation of characteristic fragmentation patterns. In particular by reducing the pulse length to a timescale equivalent to the fastest vibrational periods in the molecule, we demonstrate how fragmentation of the molecule can be minimised whilst maintaining a high ionisation efficiency.