202 resultados para intermediate resolution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, niobium doping is evaluated as a means of enhancing the electrochemical performance of a Sr2Fe1.5Mo0.5O6-δ (SFM) perovskite structure cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) applications. As the radius of Nb approximates that of Mo and exhibits +4/+5 mixed valences, its substitution is expected to improve material performance. A series of Sr2Fe1.5Mo0.5-xNbxO6-δ (x = 0.05, 0.10, 0.15, 0.20) cathode materials are prepared and the phase structure, chemical compatibility, microstructure, electrical conductivity, polarization resistance and power generation are systematically characterized. Among the series of samples, Sr2Fe1.5Mo0.4Nb0.10O6-δ (SFMNb0.10) exhibits the highest conductivity value of 30 S cm-1 at 550°C, and the lowest area specific resistance of 0.068 Ω cm2 at 800°C. Furthermore, an anode-supported single cell incorporating a SFMNb0.10 cathode presents a maximum power density of 1102 mW cm-2 at 800°C. Furthermore no obvious performance degradation is observed over 15 h at 750°C with wet H2(3% H2O) as fuel and ambient air as the oxidant. These results demonstrate that SFMNb shows great promise as a novel cathode material for IT-SOFCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High temperature ceramic membranes have interesting possibilities for application in areas of new and developing technologies such as hydrocarbon combustion with carbon dioxide capture and electrochemical promotion of catalysis (EPOC). However, membrane module sealing remains a significant technical challenge. In this work a borosilicate glass sealant (50SiO2·25B2O3·25Na2O, mol%) was developed to fit the requirements of sealing an air separation membrane system at intermediate temperatures (300-600 °C). The seal was assessed by testing the leak rates under a range of conditions. The parameters tested included the effect of flowrate on the leak rate, the heating and cooling rates of the reactor and the range of temperatures under which the system could operate. Tests for durability and reliability were also performed. It was found that the most favourable reactor configuration employed a reactor with the ceramic pellet placed underneath the inner chamber alumina tube (inverted configuration), using a quartz wool support to keep the membrane in place prior to sealing. Using this configuration the new glass-based seal was found to be a more suitable sealant than traditional alternatives; it produced lower leak rates at all desirable flowrates, with the potential for rapid heating and cooling and multiple cycling, allowing for prolonged usage. © 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel type of microwave probes based on the loaded aperture geometry has been proposed and experimentally evaluated for dielectrics characterisation and high-resolution near-field imaging. Experimental results demonstrate the possibility of very accurate microwave spectroscopic characterisation of thin lossy dielectric samples and biological materials containing water. High-resolution images of the subwavelength lossy dielectric strips and wet and dry leaves have been obtained with amplitude contrast around 10-20 dB and spatial resolution better than one-tenth of a wavelength in the near-field zone. A microwave imaging scenario for the early-stage skin cancer identification based on the artificial dielectric model has also been explored. This model study shows that the typical resolution of an artificial malignant tumour with a characteristic size of one-tenth of a wavelength can be discriminated with at least 6 dB amplitude and 50° phase contrast from the artificial healthy skin and with more than 3 dB contrast from a benign lesion of the same size. It has also been demonstrated that the proposed device can efficiently deliver microwave energy to very small, subwavelength, focal areas which is highly sought in the microwave hyperthermia applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: We report simultaneous observations of the nearby flare star Proxima Centauri with VLT/UVES and XMM-Newton over three nights in March 2009. Our optical and X-ray observations cover the star's quiescent state, as well as its flaring activity and allow us to probe the stellar atmospheric conditions from the photosphere into the chromosphere, and then the corona during its different activity stages. Methods: Using the X-ray data, we investigate variations in coronal densities and abundances and infer loop properties for an intermediate-sized flare. The optical data are used to investigate the magnetic field and its possible variability, to construct an emission line list for the chromosphere, and use certain emission lines to construct physical models of Proxima Centauri's chromosphere. Results: We report the discovery of a weak optical forbidden Fe xiii line at 3388 Å during the more active states of Proxima Centauri. For the intermediate flare, we find two secondary flare events that may originate in neighbouring loops, and discuss the line asymmetries observed during this flare in H i, He i, and Ca ii lines. The high time-resolution in the Hα line highlights strong temporal variations in the observed line asymmetries, which re-appear during a secondary flare event. We also present theoretical modelling with the stellar atmosphere code PHOENIX to construct flaring chromospheric models. Based on observations collected at the European Southern Observatory, Paranal, Chile, 082.D-0953A and on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member states and NASA.Full Table 6 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A133

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Patient-reported outcomes (PROs) might detect more toxic effects of radiotherapy than do clinician-reported outcomes. We did a quality of life (QoL) substudy to assess PROs up to 24 months after conventionally fractionated or hypofractionated radiotherapy in the Conventional or Hypofractionated High Dose Intensity Modulated Radiotherapy in Prostate Cancer (CHHiP) trial.

METHODS: The CHHiP trial is a randomised, non-inferiority phase 3 trial done in 71 centres, of which 57 UK hospitals took part in the QoL substudy. Men with localised prostate cancer who were undergoing radiotherapy were eligible for trial entry if they had histologically confirmed T1b-T3aN0M0 prostate cancer, an estimated risk of seminal vesicle involvement less than 30%, prostate-specific antigen concentration less than 30 ng/mL, and a WHO performance status of 0 or 1. Participants were randomly assigned (1:1:1) to receive a standard fractionation schedule of 74 Gy in 37 fractions or one of two hypofractionated schedules: 60 Gy in 20 fractions or 57 Gy in 19 fractions. Randomisation was done with computer-generated permuted block sizes of six and nine, stratified by centre and National Comprehensive Cancer Network (NCCN) risk group. Treatment allocation was not masked. UCLA Prostate Cancer Index (UCLA-PCI), including Short Form (SF)-36 and Functional Assessment of Cancer Therapy-Prostate (FACT-P), or Expanded Prostate Cancer Index Composite (EPIC) and SF-12 quality-of-life questionnaires were completed at baseline, pre-radiotherapy, 10 weeks post-radiotherapy, and 6, 12, 18, and 24 months post-radiotherapy. The CHHiP trial completed accrual on June 16, 2011, and the QoL substudy was closed to further recruitment on Nov 1, 2009. Analysis was on an intention-to-treat basis. The primary endpoint of the QoL substudy was overall bowel bother and comparisons between fractionation groups were done at 24 months post-radiotherapy. The CHHiP trial is registered with ISRCTN registry, number ISRCTN97182923.

FINDINGS: 2100 participants in the CHHiP trial consented to be included in the QoL substudy: 696 assigned to the 74 Gy schedule, 698 assigned to the 60 Gy schedule, and 706 assigned to the 57 Gy schedule. Of these individuals, 1659 (79%) provided data pre-radiotherapy and 1444 (69%) provided data at 24 months after radiotherapy. Median follow-up was 50·0 months (IQR 38·4-64·2) on April 9, 2014, which was the most recent follow-up measurement of all data collected before the QoL data were analysed in September, 2014. Comparison of 74 Gy in 37 fractions, 60 Gy in 20 fractions, and 57 Gy in 19 fractions groups at 2 years showed no overall bowel bother in 269 (66%), 266 (65%), and 282 (65%) men; very small bother in 92 (22%), 91 (22%), and 93 (21%) men; small bother in 26 (6%), 28 (7%), and 38 (9%) men; moderate bother in 19 (5%), 23 (6%), and 21 (5%) men, and severe bother in four (<1%), three (<1%) and three (<1%) men respectively (74 Gy vs 60 Gy, ptrend=0.64, 74 Gy vs 57 Gy, ptrend=0·59). We saw no differences between treatment groups in change of bowel bother score from baseline or pre-radiotherapy to 24 months.

INTERPRETATION: The incidence of patient-reported bowel symptoms was low and similar between patients in the 74 Gy control group and the hypofractionated groups up to 24 months after radiotherapy. If efficacy outcomes from CHHiP show non-inferiority for hypofractionated treatments, these findings will add to the growing evidence for moderately hypofractionated radiotherapy schedules becoming the standard treatment for localised prostate cancer.

FUNDING: Cancer Research UK, Department of Health, and the National Institute for Health Research Cancer Research Network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel microwave high-resolution near-field imaging technique is proposed and experimentally evaluated in reflectometry imaging scenarios involving planar metal-dielectric structures. Two types of resonance near field probes-a small helix antenna and a loaded subwavelength slot aperture are studied in this paper. These probes enable very tight spatial field localization with the full width at half maximum around one tenth of a wavelength, λ, at λ/100-λ/10 standoff distance. Importantly, the proposed probes permit resonance electromagnetic coupling to dielectric or printed conductive patterns, which leads to the possibility of very high raw image resolution with imaged feature-to-background contrast greater than 10-dB amplitude and 50° phase. In addition, high-resolution characterization of target geometries based on the cross correlation image processing technique is proposed and assessed using experimental data. It is shown that printed elements features with subwavelength size ~λ/15 or smaller can be characterized with at least 10-dB resolution contrast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we review the recent progress made in the detection, examination, characterisation and interpretation of oscillations manifesting in small-scale magnetic elements in the solar photosphere. This region of the Sun's atmosphere is especially dynamic, and importantly, permeated with an abundance of magnetic field concentrations. Such magnetic features can span diameters of hundreds to many tens of thousands of km, and are thus commonly referred to as the `building blocks' of the magnetic solar atmosphere. However, it is the smallest magnetic elements that have risen to the forefront of solar physics research in recent years. Structures, which include magnetic bright points, are often at the diffraction limit of even the largest of solar telescopes. Importantly, it is the improvements in facilities, instrumentation, imaging techniques and processing algorithms during recent years that have allowed researchers to examine the motions, dynamics and evolution of such features on the smallest spatial and temporal scales to date. It is clear that while these structures may demonstrate significant magnetic field strengths, their small sizes make them prone to the buffeting supplied by the ubiquitous surrounding convective plasma motions. Here, it is believed that magnetohydrodynamic waves can be induced, which propagate along the field lines, carrying energy upwards to the outermost extremities of the solar corona. Such wave phenomena can exist in a variety of guises, including fast and slow magneto-acoustic modes, in addition to Alfven waves. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate how wave motion is generated in the solar photosphere, which oscillatory modes are most prevalent, and the role that these waves play in supplying energy to various layers of the solar atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-sediment exchange is a fundamental component of oxyanion cycling in the environment. Yet, many of the (im)mobilization processes overlay complex spatial and temporal redox regimes that occur within millimeters of the interface. Only a few methods exist that can reliably capture these porewater fluxes, with the most popular being high-resolution diffusive gradients in thin films (HR-DGT). However, functionality of HR-DGT is restricted by the availability of suitable analyte binding agents within the sampler, which must be simple to cast and homogeneously distributed in the binding layer, exhibit adequate sorption capacities, be resistive to chemical change, and possess a very fine particle size (≤10 μm). A novel binding layer was synthesized to meet these requirements by in situ precipitation of zirconia into a precast hydrogel. The particle diameter ≤0.2 μm of zirconia in this precipitated gel was uniform and at least 50-times smaller than the conventional molding approach. Further, this gel had superior binding and stability characteristics compared with the commonly used ferrihydrite HR-DGT technique and could be easily fabricated as an ultrathin gel (60 μm) for simultaneous oxygen imaging in conjunction with planar-optodes. Chemical imaging of anion and oxygen fluxes using the new sampler were evaluated on Lake Taihu sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter reviews the recent observations of waves and oscillations manifesting in fine-scale magnetic structures in the solar photosphere, which are often interpreted as the "building blocks' of the magnetic Sun. The authors found, through phase relationships between the various waveforms, that small-scale magnetic bright points (MBPs) in the photosphere demonstrated signatures of specific magnetoacoustic waves, in particular the sausage and kink modes. Modern magnetohydrodynamic (MHD) simulations of the lower solar atmosphere clearly show how torsional motions can easily be induced in magnetic elements in the photosphere through the processes of vortical motions and/or buffeting by neighboring granules. The authors detected significant power associated with high-frequency horizontal motions, and suggested that these cases may be especially important in the creation of a turbulent environment that efficiently promotes Alfvén wave dissipation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For applications to laboratory and astrophysical plasmas, there is a great need for accurate electron-impact excitation data between individual levels in the lower charge-state ions of iron. Recently, we have reported on the first intermediate-coupling R -matrix calculation of electron-impact excitation in Fe 4+ , in which the close-coupling expansion of the target included levels from both ground and excited configurations (Ballance et al 2007 J. Phys. B: At. Mol. Opt. Phys. [/0953-4075/40/23/f01] 40 F327 , 2008 Europhys. News 39 14). In this paper, we present the results of two large intermediate-coupling Dirac R -matrix calculations of electron-impact excitation of Fe 5+ . The results from the two calculations, which differ only in the configuration–interaction expansions of the target, are compared. These comparisons provide some indication of the accuracy of the calculations and the resulting data should be useful in modelling plasmas containing iron.