210 resultados para cancer survival


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer is the second most common cause of cancer-associated deaths in men, and signaling via a transcription factor called androgen receptor (AR) is an important driver of the disease. Consequently, AR target genes are prominent candidates to be specific for prostate cancer and also important for the survival of the cancer cells. Here we assess the levels of all hexosamine biosynthetic pathway (HBP) enzymes in 15 separate clinical gene expression data sets and identify the last enzyme in the pathway, UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1), to be highly overexpressed in prostate cancer. We analyzed 3261 prostate cancers on a tissue microarray and found that UAP1 staining correlates negatively with Gleason score (P=0.0039) and positively with high AR expression (P<0.0001). Cells with high UAP1 expression have 10-fold increased levels of the HBP end-product, UDP-N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is essential for N-linked glycosylation occurring in the endoplasmic reticulum (ER) and high UAP1 expression associates with resistance against inhibitors of N-linked glycosylation (tunicamycin and 2-deoxyglucose) but not with a general ER stress-inducing agent, the calcium ionophore A23187. Knockdown of UAP1 expression re-sensitized cells towards inhibitors of N-linked glycosylation, as measured by proliferation and activation of ER stress markers. Taken together, we have identified an enzyme, UAP1, which is highly overexpressed in prostate cancer and protects cancer cells from ER stress conferring a growth advantage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolic changes are a well-described hallmark of cancer and are responses to changes in the activity of diverse oncogenes and tumour suppressors. For example, steroid hormone biosynthesis is intimately associated with changes in lipid metabolism and represents a therapeutic intervention point in the treatment of prostate cancer (PCa). Both prostate gland development and tumorigenesis rely on the activity of a steroid hormone receptor family member, the androgen receptor (AR). Recent studies have sought to define the biological effect of the AR on PCa by defining the whole-genome binding sites and gene networks that are regulated by the AR. These studies have provided the first systematic evidence that the AR influences metabolism and biosynthesis at key regulatory steps within pathways that have also been defined as points of influence for other oncogenes, including c-Myc, p53 and hypoxia-inducible factor 1α, in other cancers. The success of interfering with these pathways in a therapeutic setting will, however, hinge on our ability to manage the concomitant stress and survival responses induced by such treatments and to define appropriate therapeutic windows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metabolic disruptions that occur widely in cancers offer an attractive focus for generalized treatment strategies. The hexosamine biosynthetic pathway (HBP) senses metabolic status and produces an essential substrate for O-linked β-N-acetylglucosamine transferase (OGT), which glycosylates and thereby modulates the function of its target proteins. Here, we report that the HBP is activated in prostate cancer cells and that OGT is a central regulator of c-Myc stability in this setting. HBP genes were overexpressed in human prostate cancers and androgen regulated in cultured human cancer cell lines. Immunohistochemical analysis of human specimens (n = 1987) established that OGT is upregulated at the protein level and that its expression correlates with high Gleason score, pT and pN stages, and biochemical recurrence. RNA interference-mediated siliencing or pharmacologic inhibition of OGT was sufficient to decrease prostate cancer cell growth. Microarray profiling showed that the principal effects of OGT inhibition in prostate cancer cells were related to cell-cycle progression and DNA replication. In particular, c-MYC was identified as a candidate upstream regulator of OGT target genes and OGT inhibition elicited a dose-dependent decrease in the levels of c-MYC protein but not c-MYC mRNA in cell lines. Supporting this relationship, expression of c-MYC and OGT was tightly correlated in human prostate cancer samples (n = 1306). Our findings identify HBP as a modulator of prostate cancer growth and c-MYC as a key target of OGT function in prostate cancer cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detection of pretreatment disseminated cells (pre-DTC) reflecting its homing to bone marrow (BM) in prostate cancer (PCa) might improve the current model to predict recurrence or survival in men with nonmetastatic disease despite of primary treatment. Thereby, pre-DTC may serve as an early prognostic biomarker. Post-treatment DTCs (post-DTC) finding may supply the clinician with additional predictive information about the possible course of PCa. To assess the prognostic impact of DTCs in BM aspirates sampled before initiation of primary therapy (pre-DTC) and at least 2 years after (post-DTC) to established prognostic factors and survival in patients with PCa. Available BM of 129 long-term follow-up patients with T1-3N0M0 PCa was assessed in addition to 100 BM of those in whom a pretreatment BM was sampled. Patients received either combined therapy [n = 81 (63%)], radiotherapy (RT) with different duration of hormone treatment (HT) or monotherapy with RT or HT alone [n = 48 (37%)] adapted to the criteria of the SPCG-7 trial. Mononuclear cells were deposited on slides according to the cytospin methodology and DTCs were identified by immunocytochemistry using the pancytokeratin antibodies AE1/AE3. The median age of men at diagnosis was 64.5 years (range 49.5-73.4 years). The median long-term follow-up from first BM sampling to last observation was 11 years. Categorized clinically relevant factors in PCa showed only pre-DTC status as the statistically independent parameter for survival in the multivariate analysis. Pre-DTCs homing to BM are significantly associated with clinically relevant outcome independent to the patient's treatment at diagnosis with nonmetastatic PCa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fluorescence in situ hybridisation (FISH) assay has been used to screen for ETV1 gene rearrangements in a cohort of 429 prostate cancers from patients who had been diagnosed by trans-urethral resection of the prostate. The presence of ETV1 gene alterations (found in 23 cases, 5.4%) was correlated with higher Gleason Score (P=0.001), PSA level at diagnosis (P=<0.0001) and clinical stage (P=0.017) but was not linked to poorer survival. We found that the six previously characterised translocation partners of ETV1 only accounted for 34% of ETV1 re-arrangements (eight out of 23) in this series, with fusion to the androgen-repressed gene C15orf21 representing the commonest event (four out of 23). In 5'-RACE experiments on RNA extracted from formalin-fixed tissue we identified the androgen-upregulated gene ACSL3 as a new 5'-translocation partner of ETV1. These studies report a novel fusion partner for ETV1 and highlight the considerable heterogeneity of ETV1 gene rearrangements in human prostate cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite compelling preclinical data in colorectal cancer (CRC), the efficacy of HDACIs has been disappointing in the clinic. The goal of this study was to evaluate the effectiveness of vorinostat and panobinostat in a dose- and exposure-dependent manner in order to better understand the dynamics of drug action and antitumor efficacy. In a standard 72 h drug exposure MTS assay, notable concentration-dependent antiproliferative effects were observed in the IC50 range of 1.2-2.8 μmol/L for vorinostat and 5.1-17.5 nmol/L for panobinostat. However, shorter clinically relevant exposures of 3 or 6 h failed to elicit any significant growth inhibition and in most cases a >24 h exposure to vorinostat or panobinostat was required to induce a sigmoidal dose-response. Similar results were observed in colony formation assays where ≥ 24 h of exposure was required to effectively reduce colony formation. Induction of acetyl-H3, acetyl-H4 and p21 by vorinostat were transient and rapidly reversed within 12 h of drug removal. In contrast, panobinostat-induced acetyl-H3, acetyl-H4, and p21 persisted for 48 h after an initial 3 h exposure. Treatment of HCT116 xenografts with panobinostat induced significant increases in acetyl-H3 and downregulation of thymidylate synthase after treatment. Although HDACIs exert both potent growth inhibition and cytotoxic effects when CRC cells were exposed to drug for ≥ 24 h, these cells demonstrate an inherent ability to survive HDACI concentrations and exposure times that exceed those clinically achievable. Continued efforts to develop novel HDACIs with improved pharmacokinetics/phamacodynamics, enhanced intratumoral delivery and class/isoform-specificity are needed to improve the therapeutic potential of HDACIs and HDACI-based combination regimens in solid tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemotherapies that target thymidylate synthase (TS) continue to see considerable clinical expansion in non-small cell lung cancer (NSCLC). One drawback to TS-targeted therapies is drug resistance and subsequent treatment failure. Novel therapeutic and biomarker-driven strategies are urgently needed. The enzyme deoxyuridine triphosphate nucleotidohydrolase (dUTPase) is reported to protect tumor cells from aberrant misincorporation of uracil during TS inhibition. The goal of this study was to investigate the expression and significance of dUTPase in mediating response to TS-targeted agents in NSCLC. The expression of dUTPase in NSCLC cell lines and clinical specimens was measured by quantitative real-time reverse transcriptase PCR and immunohistochemistry. Using a validated RNA interference approach, dUTPase was effectively silenced in a panel of NSCLC cell lines and response to the fluoropyrimidine fluorodeoxyuridine (FUdR) and the antifolate pemetrexed was analyzed using growth inhibition and clonogenic assays. Apoptosis was analyzed by flow cytometry. Significant variation in the quantity and cellular expression of dUTPase was observed, including clear evidence of overexpression in NSCLC cell line models and tumor specimens at the mRNA and protein level. RNA interference-mediated silencing of dUTPase significantly sensitized NSCLC cells to growth inhibition induced by FUdR and pemetrexed. This sensitization was accompanied by a significant expansion of intracellular dUTP pools and significant decreases in NSCLC cell viability evaluated by clonogenicity and apoptotic analyses. Together, these results strongly suggest that uracil misincorporation is a potent determinant of cytotoxicity to TS inhibition in NSCLC and that inhibition of dUTPase is a mechanism-based therapeutic approach to significantly enhance the efficacy of TS-targeted chemotherapeutic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Despite the significant progress made in colon cancer chemotherapy, advanced disease remains largely incurable and novel efficacious chemotherapies are urgently needed. Histone deacetylase inhibitors (HDACi) represent a novel class of agents which have demonstrated promising preclinical activity and are undergoing clinical evaluation in colon cancer. The goal of this study was to identify genes in colon cancer cells that are differentially regulated by two clinically advanced hydroxamic acid HDACi, vorinostat and LBH589 to provide rationale for novel drug combination partners and identify a core set of HDACi-regulated genes.

METHODS: HCT116 and HT29 colon cancer cells were treated with LBH589 or vorinostat and growth inhibition, acetylation status and apoptosis were analyzed in response to treatment using MTS, Western blotting and flow cytometric analyses. In addition, gene expression was analyzed using the Illumina Human-6 V2 BeadChip array and Ingenuity Pathway Analysis.

RESULTS: Treatment with either vorinostat or LBH589 rapidly induced histone acetylation, cell cycle arrest and inhibited the growth of both HCT116 and HT29 cells. Bioinformatic analysis of the microarray profiling revealed significant similarity in the genes altered in expression following treatment with the two HDACi tested within each cell line. However, analysis of genes that were altered in expression in the HCT116 and HT29 cells revealed cell-line-specific responses to HDACi treatment. In addition a core cassette of 11 genes modulated by both vorinostat and LBH589 were identified in both colon cancer cell lines analyzed.

CONCLUSION: This study identified HDACi-induced alterations in critical genes involved in nucleotide metabolism, angiogenesis, mitosis and cell survival which may represent potential intervention points for novel therapeutic combinations in colon cancer. This information will assist in the identification of novel pathways and targets that are modulated by HDACi, providing much-needed information on HDACi mechanism of action and providing rationale for novel drug combination partners. We identified a core signature of 11 genes which were modulated by both vorinostat and LBH589 in a similar manner in both cell lines. These core genes will assist in the development and validation of a common gene set which may represent a molecular signature of HDAC inhibition in colon cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although significant progress has been made in colorectal cancer (CRC) treatment within the last decade with the approval of multiple new agents, the prognosis for patients with metastatic CRC remains poor with 5-year survival rates of approximately 8%. Resistance to chemotherapy remains a major obstacle in effective CRC treatment and many patients do not receive any clinical benefit from chemotherapy. In addition, other patients will experience adverse reactions to treatment resulting in dose modifications or treatment withdrawal, which can severely reduce treatment efficacy. Currently, significant research efforts are attempting to identify reliable and validated biomarkers with which will guide clinicians to make more informed treatment decisions. Specifically, the use of molecular profiling has the potential to assist the clinician in administering the correct drug, dose, or intervention for the patient before the onset of therapy thereby selecting a treatment strategy likely to have the greatest clinical outcome while minimizing adverse events. However, until recently, personalized medicine is a paradigm that has existed more in conceptual terms than in reality with very few validated biomarkers used routinely in metastatic CRC treatment. Rapid advances in genomic, transcriptomic and proteomic technologies continues to improve our understanding of tumor biology, but the search for reliable biomarkers has turned out to be more challenging than previously anticipated with significant disparity in published literature and limited translation into routine clinical practice. Recent progress with the identification and validation of biomarkers to the anti-epidermal growth factor receptor monoclonal antibodies including KRAS and possibly BRAF provide optimism that the goal of individualized treatment is within reach. This review will highlight and discuss current progress in the search for biomarkers, the challenges this emerging field presents, and the future role of biomarkers in advancing CRC treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumor recurrence after curative resection remains a major problem in patients with locally advanced colorectal cancer treated with adjuvant chemotherapy. Genetic single-nucleotide polymorphisms (SNP) may serve as useful molecular markers to predict clinical outcomes in these patients and identify targets for future drug development. Recent in vitro and in vivo studies have demonstrated that the plastin genes PLS3 and LCP1 are overexpressed in colon cancer cells and play an important role in tumor cell invasion, adhesion, and migration. Hence, we hypothesized that functional genetic variations of plastin may have direct effects on the progression and prognosis of locally advanced colorectal cancer. We tested whether functional tagging polymorphisms of PLS3 and LCP1 predict time to tumor recurrence (TTR) in 732 patients (training set, 234; validation set, 498) with stage II/III colorectal cancer. The PLS3 rs11342 and LCP1 rs4941543 polymorphisms were associated with a significantly increased risk for recurrence in the training set. PLS3 rs6643869 showed a consistent association with TTR in the training and validation set, when stratified by gender and tumor location. Female patients with the PLS3 rs6643869 AA genotype had the shortest median TTR compared with those with any G allele in the training set [1.7 vs. 9.4 years; HR, 2.84; 95% confidence interval (CI), 1.32-6.1; P = 0.005] and validation set (3.3 vs. 13.7 years; HR, 2.07; 95% CI, 1.09-3.91; P = 0.021). Our findings suggest that several SNPs of the PLS3 and LCP1 genes could serve as gender- and/or stage-specific molecular predictors of tumor recurrence in stage II/III patients with colorectal cancer as well as potential therapeutic targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Lapatinib plus capecitabine emerged as an efficacious therapy in metastatic breast cancer (mBC). We aimed to identify germline single-nucleotide polymorphisms (SNPs) in genes involved in capecitabine catabolism and human epidermal receptor signaling that were associated with clinical outcome to assist in selecting patients likely to benefit from this combination.

PATIENTS AND METHODS: DNA was extracted from 240 of 399 patients enrolled in EGF100151 clinical trial (NCT00078572; clinicaltrials.gov) and SNPs were successfully evaluated in 234 patients. The associations between SNPs and clinical outcome were analyzed using Fisher's exact test, Kaplan-Meier curves, log-rank tests, likelihood ratio test within logistic or Cox regression model, as appropriate.

RESULTS: There were significant interactions between CCND1 A870G and clinical outcome. Patients carrying the A-allele were more likely to benefit from lapatinib plus capecitabine versus capecitabine when compared with patients harboring G/G (P = 0.022, 0.024 and 0.04, respectively). In patients with the A-allele, the response rate (RR) was significantly higher with lapatinib plus capecitabine (35%) compared with capecitabine (11%; P = 0.001) but not between treatments in patients with G/G (RR = 24% and 32%, respectively; P = 0.85). Time to tumor progression (TTP) was longer in patients with the A-allele treated with lapatinib plus capecitabine compared with capecitabine (median TTP = 7.9 and 3.4 months; P < 0.001), but not in patients with G/G (median TTP = 6.1 and 6.6 months; P = 0.92).

CONCLUSION: Our findings suggest that CCND1A870G may be useful in predicting clinical outcome in HER2-positive mBC patients treated with lapatinib plus capecitabine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aberrant activation of Wnt/β-catenin signaling, resulting in the expression of Wnt-regulated oncogenes, is recognized as a critical factor in the etiology of colorectal cancer. Occupancy of β-catenin at promoters of Wnt target genes drives transcription, but the mechanism of β-catenin action remains poorly understood. Here, we show that CARM1 (coactivator-associated arginine methyltransferase 1) interacts with β-catenin and positively modulates β-catenin-mediated gene expression. In colorectal cancer cells with constitutively high Wnt/β-catenin activity, depletion of CARM1 inhibits expression of endogenous Wnt/β-catenin target genes and suppresses clonal survival and anchorage-independent growth. We also identified a colorectal cancer cell line (RKO) with a low basal level of β-catenin, which is dramatically elevated by treatment with Wnt3a. Wnt3a also increased the expression of a subset of endogenous Wnt target genes, and CARM1 was required for the Wnt-induced expression of these target genes and the accompanying dimethylation of arginine 17 of histone H3. Depletion of β-catenin from RKO cells diminished the Wnt-induced occupancy of CARM1 on a Wnt target gene, indicating that CARM1 is recruited to Wnt target genes through its interaction with β-catenin and contributes to transcriptional activation by mediating events (including histone H3 methylation) that are downstream from the actions of β-catenin. Therefore, CARM1 is an important positive modulator of Wnt/β-catenin transcription and neoplastic transformation, and may thereby represent a novel target for therapeutic intervention in cancers involving aberrantly activated Wnt/β-catenin signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lemur tyrosine kinase-3 (LMTK3) was recently identified as an estrogen receptor (ER)-α modulator related to endocrine therapy resistance, and its polymorphisms rs9989661 (T>C) T/T genotype and rs8108419 (G>A) G/G or A/G genotype predicted improved outcomes in breast cancer. Because different predominant ER distributions link to breast and gastric cancer and little is known of the prognostic role of LMTK3 in gastric cancer, this study was carried out to clarify the prognostic role of these polymorphisms in gastric cancer. One-hundred and sixty-nine Japanese and 137 U.S. patients with localized gastric adenocarcinoma were enrolled. Genomic DNA was extracted from blood or tissue, and all samples were analyzed by PCR-based direct DNA sequencing. Overall, these polymorphisms were not associated with survival in both cohorts. When gender was considered, in multivariate analysis, harboring rs9989661 T/T genotype was associated with disease-free survival [HR, 4.37; 95% confidence interval (CI), 2.08-9.18; P < 0.0001] and overall survival (OS; HR, 3.69; 95% CI, 1.65-8.24; P = 0.0014) in the Japanese males and time to recurrence (HR, 7.29; 95% CI, 1.07-49.80; P = 0.043) in the U.S. females. Meanwhile, harboring rs8108419 G/G genotype was associated with OS in the Japanese females (HR, 3.04; 95% CI, 1.08-8.56; P = 0.035) and the U.S. males (HR, 3.39; 95% CI, 1.31-8.80; P = 0.012). The prognostic role of these polymorphisms may be negative in gastric cancer. These findings suggest that the estrogen pathway may play a prognostic role in patients with gastric cancer but this may be dependent on the regional differences both in physiology and genetic alterations of gastric cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: recent studies have found that KRAS mutations predict resistance to monoclonal antibodies targeting the epidermal growth factor receptor in metastatic colorectal cancer (mCRC). A polymorphism in a let-7 microRNA complementary site (lcs6) in the KRAS 3' untranslated region (UTR) is associated with an increased cancer risk in non-small-cell lung cancer and reduced overall survival (OS) in oral cancers. We tested the hypothesis whether this polymorphism may be associated with clinical outcome in KRAS wild-type (KRASwt) mCRC patients treated with cetuximab monotherapy.

PATIENTS AND METHODS: the presence of KRAS let-7 lcs6 polymorphism was evaluated in 130 mCRC patients who were enrolled in a phase II study of cetuximab monotherapy (IMCL-0144). Genomic DNA was extracted from dissected formalin-fixed paraffin-embedded tumor tissue, KRAS mutation status and polymorphism were assessed using direct sequencing and PCR restriction fragment length polymorphism technique.

RESULTS: KRAS let-7 lcs6 polymorphism was found to be related to object response rate (ORR) in mCRC patients whose tumors had KRASwt. The 12 KRASwt patients harboring at least a variant G allele (TG or GG) had a 42% ORR compared with a 9% ORR in 55 KRASwt patients with let-7 lcs6 TT genotype (P = 0.02, Fisher's exact test). KRASwt patients with TG/GG genotypes had trend of longer median progression-free survival (3.9 versus 1.3 months) and OS (10.7 versus 6.4 months) compared to those with TT genotypes.

CONCLUSIONS: these results are the first to indicate that the KRAS 3'UTR polymorphism may predict for cetuximab responsiveness in KRASwt mCRC patients, which warrants validation in other clinical trials.