294 resultados para Ultrasonic testing.
Resumo:
Knowledge of groundwater flow/mass transport, in poorly productive aquifers which underlie over 65% of the island of Ireland, is necessary for effective management of catchment water quality and aquatic ecology. This research focuses on a fractured low-grade Ordovician/Silurian greywacke sequence which underlies approximately 25% of the northern half of Ireland. Knowledge of the unit’s hydrogeological properties remain largely restricted to localised single well open hole “transmissivity” values. Current hydrogeological conceptual models of the Greywacke view the bulk of groundwater flowing through fractures in an otherwise impermeable bedrock mass.
Core analysis permits fracture characterisation, although not all identified fractures may be involved in groundwater flow. Traditional in-situ hydraulic characterisation relies on cumbersome techniques such as packer testing or geophysical borehole logging (e.g. flowmeters). Queen’s University Belfast is currently carrying out hydraulic characterization of 16 boreholes at its Greywacke Hydrogeological Research Site at Mount Stewart, Northern Ireland.
Development of dye dilution methods, using a recently-developed downhole fluorometer, provided a portable, user-friendly, and inexpensive means of detecting hydraulically active intervals in open boreholes. Measurements in a 55m deep hole, three days following fluorescent dye injection, demonstrated the ability of the technique to detect two discrete hydraulically active intervals corresponding to zones identified by caliper and heat-pulse flowmeter logs. High resolution acoustic televiewer logs revealed the zones to correspond to two steeply dipping fractured intervals. Results suggest the rock can have effective porosities of the order of 0.1%.
Study findings demonstrate dye dilution’s utility in characterizing groundwater flow in fractured aquifers. Tests on remaining holes will be completed at different times following injection to identify less permeable fractures and develop an improved understanding of the structural controls on groundwater flow in the uppermost metres of competent bedrock.
Resumo:
Groundwater drawn from fluvioglacial sand and gravel aquifers form the principal source of drinking water in many part of central Western Europe. High population densities and widespread organic agriculture in these same areas constitute hazards that may impact the microbiological quality of many potable supplies. Tracer testing comparing two similarly sized bacteria (E.coli and P. putida) and the smaller bacteriophage (H40/1) with the response of non-reactive solute tracer (uranine) at the decametre scale revealed that all tracers broke through up to 100 times more quickly than anticipated using conventional rules of thumb. All microbiological tracer responses were less disperse than the solute, although bacterial peak relative concentrations consistently exceeded those of the solute tracer at one sampling location reflecting exclusion processes influencing micro biological tracer migration. Relative recoveries of H40/1 and E.coli proved consistent at both monitoring wells, while responses of H40/1 and P.putida differed. Examination of exposures of the upper reaches of the aquifer in nearby sand and gravel quarries revealed the aquifer to consist of laterally extensive layers of open framework (OW) gravel enveloped in finer grained gravelly sand. Granulometric analysis of these deposits suggested that the OW gravel was up to two orders of magnitude more permeable than the surrounding deposits giving rise to the preferential flow paths. By contrast fine grained lenses of silty sand within the OW gravels are suspected to play an important role in the exclusion processes that permit solutes to access them but exclude larger micro organisms.
Resumo:
In this paper, we test the Prebish-Singer (PS) hypothesis, which states that real commodity prices decline in the long run, using two recent powerful panel data stationarity tests accounting for cross-sectional dependence and a structural break. We find that the hypothesis cannot be rejected for most commodities other than oil.
Resumo:
In two experiments, we tested some of the central claims of the empathizing-systemizing (E-S) theory. Experiment 1 showed that the systemizing quotient (SQ) was unrelated to performance on a mathematics test, although it was correlated with statistics-related attitudes, self-efficacy, and anxiety. In Experiment 2, systemizing skills, and gender differences in these skills, were more strongly related to spatial thinking styles than to SQ. In fact, when we partialled the effect of spatial thinking styles, SQ was no longer related to systemizing skills. Additionally, there was no relationship between the Autism Spectrum Quotient (AQ) and the SQ, or skills and interest in mathematics and mechanical reasoning. We discuss the implications of our findings for the E-S theory, and for understanding the autistic cognitive profile.
Resumo:
Genetic testing for gene mutations associated with specific cancers provides an opportunity for early detection, surveillance, and intervention (Smith, Cokkinides, & Brawley, 2008). Lifetime risk estimates provided by genetic testing refer to the risk of developing a specific disease within one's lifetime, and evidence suggests that this is important for the medical choices people make, as well as their future family and financial plans. The present studies tested whether adult men understand the lifetime risks of prostate cancer informed by genetic testing. In 2 experiments, adult men were asked to interpret the lifetime risk information provided in statements about risks of prostate cancer. Statement format was manipulated such that the most appropriate interpretation of risk statements referred to an absolute risk of cancer in experiment 1 and a relative risk in experiment 2. Experiment 1 revealed that few men correctly interpreted the lifetime risks of cancer when these refer to an absolute risk of cancer, and numeracy levels positively predicted correct responding. The proportion of correct responses was greatly improved in experiment 2 when the most appropriate interpretation of risk statements referred instead to a relative rather than an absolute risk, and numeracy levels were less involved. Understanding of lifetime risk information is often poor because individuals incorrectly believe that these refer to relative rather than absolute risks of cancer.
Resumo:
The emergence of an all-composite passenger airframe marks a major advance in the development of aerostructures. Underpinning this milestone is over four decades of intensive research in this area. Nonetheless, the first-generation of composite aerostructures is very conservative. This paper will discuss the need for the development of a virtual testing capability to enable better exploitation of the material's full potential in future designs. Recent progress, by the author, in this area is presented followed by a discussion of current limitations and opportunities for further research.
Resumo:
A full-scale 34 m composite wind turbine blade was tested to failure under flap-wise loading. Local displacement measurement equipment was developed and displacements were recorded throughout the loading history.
Ovalization of the load carrying box girder was measured in the full-scale test and simulated in non-linear FE-calculations. The nonlinear Brazier effect is characterized by a crushing pressure which causes the ovalization. To capture this effect, non-linear FE-analyses at different scales were employed. A global non-linear FE-model of the entire blade was prepared and the boundaries to a more detailed sub-model were extracted. The FE-model was calibrated based on full-scale test measurements.
Local displacement measurements helped identify the location of failure initiation which lead to catastrophic failure. Comparisons between measurements and FE-simulations showed that delamination of the outer skin was the initial failure mechanism followed by delamnination buckling which then led to collapse.
Resumo:
The treatment of the Random-Phase Approximation Hamiltonians, encountered in different frameworks, like time-dependent density functional theory or Bethe-Salpeter equation, is complicated by their non-Hermicity. Compared to their Hermitian Hamiltonian counterparts, computational methods for the treatment of non-Hermitian Hamiltonians are often less efficient and less stable, sometimes leading to the breakdown of the method. Recently [Gruning et al. Nano Lett. 8 (2009) 28201, we have identified that such Hamiltonians are usually pseudo-Hermitian. Exploiting this property, we have implemented an algorithm of the Lanczos type for Random-Phase Approximation Hamiltonians that benefits from the same stability and computational load as its Hermitian counterpart, and applied it to the study of the optical response of carbon nanotubes. We present here the related theoretical grounds and technical details, and study the performance of the algorithm for the calculation of the optical absorption of a molecule within the Bethe-Salpeter equation framework. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this debate article, I am going to set out the case that sperm DNA fragmentation testing is essential in current day fertility management because-
• Our current semen analysis testing is unfit for purpose
• Sperm DNA damage testing has strong associations with every fertility check point
• Sperm DNA damage testing has strong associations with miscarriage
• Sperm DNA testing can explain ‘unexplained’ infertility
• There are reasons why sperm with poor DNA are successful in ICSI
• There are no non-invasive sperm function tests that provide the same information
• We need to take a fresh look at the ‘evidence’ against sperm DNA testing<br/>• We have no reason to wait. There are benefits for clinics and couples alike.