212 resultados para Type 1 Diabetes Mellitus
Resumo:
Diabetes mellitus is an independent risk factor in the development of atherosclerosis. In this study we aimed to demonstrate whether there is an abnormal interaction between low-density lipoproteins from diabetic patients and human macrophages. We measured cholesteryl ester synthesis and cholesteryl ester accumulation in human monocyte-derived macrophages (obtained from non-diabetic donors) incubated with low density lipoproteins from Type 1 (insulin-dependent) diabetic patients in good or fair glycaemic control. Low density lipoproteins from the diabetic patients stimulated more cholesteryl ester synthesis than low density lipoproteins from non-diabetic control subjects (7.19 +/- 1.19 vs 6.11 +/- 0.94 nmol/mg cell protein/20 h, mean +/- SEM, p less than 0.05). The stimulation of cholesteryl ester synthesis by low density lipoproteins isolated from diabetic patients was paralleled by a significant increase in intracellular cholesteryl ester accumulation (p less than 0.02). There were no significant differences in the lipid composition of low density lipoproteins between the diabetic and control groups. Non-enzymatic glycosylation of low density lipoproteins was higher in the diabetic group (p less than 0.01) and correlated significantly with cholesteryl ester synthesis (r = 0.58). Similarly, low-density lipoproteins obtained from non-diabetic subjects and glycosylated in vitro stimulated more cholesteryl ester synthesis in macrophages than control low density lipoproteins. The increase in cholesteryl ester synthesis and accumulation by cells exposed to low density lipoproteins from diabetic patients seems to be mediated by an increased uptake of these lipoproteins by macrophages.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Serum PEDF levels (mean (S.D.)) were increased in 96 Type 2 diabetic vs. 54 non-diabetic subjects; 5.3 (2.8) vs. 3.2 (2.0)mug/ml, p
Resumo:
BACKGROUND: Offspring of women with diabetes mellitus (DM) during pregnancy have a risk of developing metabolic disease in adulthood greater than that conferred by genetics alone. The mechanisms responsible are unknown, but likely involve fetal exposure to the in utero milieu, including glucose and circulating adipokines. The purpose of this study was to assess the impact of maternal DM on fetal adipokines and anthropometry in infants of Hispanic and Native American women.
METHODS: We conducted a prospective study of offspring of mothers with normoglycemia (Con-O; n = 79) or type 2 or gestational DM (DM-O; n = 45) pregnancies. Infant anthropometrics were measured at birth and 1-month of age. Cord leptin, high-molecular-weight adiponectin (HMWA), pigment epithelium-derived factor (PEDF) and C-peptide were measured by ELISA. Differences between groups were assessed using the Generalized Linear Model framework. Correlations were calculated as standardized regression coefficients and adjusted for significant covariates.
RESULTS: DM-O were heavier at birth than Con-O (3.7 ± 0.6 vs. 3.4 ± 0.4 kg, p = 0.024), but sum of skinfolds (SSF) were not different. At 1-month, there was no difference in weight, SSF or % body fat or postnatal growth between groups. Leptin was higher in DM-O (20.1 ± 14.9 vs. 9.5 ± 9.9 ng/ml in Con-O, p < 0.0001). Leptin was positively associated with birth weight (p = 0.0007) and SSF (p = 0.002) in Con-O and with maternal hemoglobin A1c in both groups (Con-O, p = 0.023; DM-O, p = 0.006). PEDF was positively associated with birth weight in all infants (p = 0.004). Leptin was positively associated with PEDF in both groups, with a stronger correlation in DM-O (p = 0.009). At 1-month, HMWA was positively associated with body weight (p = 0.004), SSF (p = 0.025) and % body fat (p = 0.004) across the cohort.
CONCLUSIONS: Maternal DM results in fetal hyperleptinemia independent of adiposity. HMWA appears to influence postnatal growth. Thus, in utero exposure to DM imparts hormonal differences on infants even without aberrant growth.
Resumo:
OBJECTIVE: Low HDL cholesterol (HDL-C) and small HDL particle size may directly promote hyperglycemia. We evaluated associations of HDL-C, apolipoprotein A-I (apoA-I), and HDL-C/apoA-I with insulin secretion, insulin resistance, HbA1c, and long-term glycemic deterioration, reflected by initiation of pharmacologic glucose control.
RESEARCH DESIGN AND METHODS: The 5-year Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study followed 9,795 type 2 diabetic subjects. We calculated baseline associations of fasting HDL-C, apoA-I, and HDL-C/apoA-I with HbA1c and, in those not taking exogenous insulin (n = 8,271), with estimated β-cell function (homeostasis model assessment of β-cell function [HOMA-B]) and insulin resistance (HOMA-IR). Among the 2,608 subjects prescribed lifestyle only, Cox proportional hazards analysis evaluated associations of HDL-C, apoA-I, and HDL-C/apoA-I with subsequent initiation of oral hypoglycemic agents (OHAs) or insulin.
RESULTS: Adjusted for age and sex, baseline HDL-C, apoA-I, and HDL-C/apoA-I were inversely associated with HOMA-IR (r = -0.233, -0.134, and -0.230; all P < 0.001; n = 8,271) but not related to HbA1c (all P > 0.05; n = 9,795). ApoA-I was also inversely associated with HOMA-B (r = -0.063; P = 0.002; n = 8,271) adjusted for age, sex, and HOMA-IR. Prospectively, lower baseline HDL-C and HDL-C/apoA-I levels predicted greater uptake (per 1-SD lower: hazard ratio [HR] 1.13 [CI 1.07-1.19], P < 0.001; and HR 1.16 [CI 1.10-1.23], P < 0.001, respectively) and earlier uptake (median 12.9 and 24.0 months, respectively, for quartile 1 vs. quartile 4; both P < 0.01) of OHAs and insulin, with no difference in HbA1c thresholds for initiation (P = 0.87 and P = 0.81). Controlling for HOMA-IR and triglycerides lessened both associations, but HDL-C/apoA-I remained significant.
CONCLUSIONS: HDL-C, apoA-I, and HDL-C/apoA-I were associated with concurrent insulin resistance but not HbA1c. However, lower HDL-C and HDL-C/apoA-I predicted greater and earlier need for pharmacologic glucose control.
Resumo:
The main hallmark of diabetic nephropathy is elevation in urinary albumin excretion. We performed a genome-wide linkage scan in 63 extended families with multiple members with type II diabetes. Urinary albumin excretion, measured as the albumin-to-creatinine ratio (ACR), was determined in 426 diabetic and 431 nondiabetic relatives who were genotyped for 383 markers. The data were analyzed using variance components linkage analysis. Heritability (h2) of ACR was significant in diabetic (h2=0.23, P=0.0007), and nondiabetic (h2=0.39, P=0.0001) relatives. There was no significant difference in genetic variance of ACR between diabetic and nondiabetic relatives (P=0.16), and the genetic correlation (rG=0.64) for ACR between these two groups was not different from 1 (P=0.12). These results suggested that similar genes contribute to variation in ACR in diabetic and nondiabetic relatives. This hypothesis was supported further by the linkage results.
Resumo:
BACKGROUND Diabetes mellitus (DM) is increasing in men of reproductive age. Despite this, the prevalence of diabetes in men attending fertility clinics is largely unknown. Furthermore, studies examining the effects of DM on sperm fertility potential have been limited to conventional semen analysis. METHODS Conventional semen analysis (semen volume, sperm count, motility and morphology) was performed for 27 diabetic (mean age 34 +/- 2 years) and 29 non-diabetic subjects (control group, men undergoing routine infertility investigations, mean age 33 +/- 1 years). Nuclear DNA (nDNA) fragmentation was assessed using the alkaline Comet assay and mitochondrial DNA (mtDNA) deletions by Long-PCR. RESULTS Other than a small, but significant, reduction in semen volume in diabetic men (2.6 versus 3.3 ml; P <0.05), conventional semen parameters did not differ significantly from control subjects. Diabetic subjects had significantly higher mean nDNA fragmentation (53 versus 32%; P <0.0001) and median number of mtDNA deletions (4 versus 3; P <0.05) compared with control subjects. CONCLUSIONS Diabetes is associated with increased sperm nuclear and mtDNA damage that may impair the reproductive capability of these men.
Resumo:
Aims/hypothesis: Glycation of insulin, resulting in impaired bioactivity, has been shown within pancreatic beta cells. We have used a novel and specific radioimmunoassay to detect glycated insulin in plasma of Type 2 diabetic subjects.
Methods: Blood samples were collected from 102 Type 2 diabetic patients in three main categories: those with good glycaemic control with a HbA1c less than 7%, moderate glycaemic control (HbA1c 7–9%) and poor glycaemic control (HBA1c greater than 9%). We used 75 age- and sex-matched non-diabetic subjects as controls. Samples were analysed for HbA1c, glucose and plasma concentrations of glycated insulin and insulin.
Results: Glycated insulin was readily detected in control and Type 2 diabetic subjects. The mean circulating concentration of glycated insulin in control subjects was 12.6±0.9 pmol/l (n=75). Glycated insulin in the good, moderate and poorly controlled diabetic groups was increased 2.4-fold (p<0.001, n=44), 2.2- fold (p<0.001, n=41) and 1.1-fold (n=17) corresponding to 29.8±5.4, 27.3±5.7 and 13.5±2.9 pmol/l, respectively.
Conclusion/interpretation: Glycated insulin circulates at noticeably increased concentrations in Type 2 diabetic subjects. [Diabetologia (2003) 46:475–478]
Resumo:
In this study, we tested the biological activity of a novel acylated form of (Pro(3))glucose-dependent insulinotropic polypetide [(Pro3)GIP] prepared by conjugating palmitic acid to Lys(16) to enhance its efficacy in vivo by promoting binding to albumin and extending its biological actions. Like the parent molecule (Pro(3))GIP, (Pro(3))GIPLys(16)PAL was completely stable to the actions of DPP-IV and significantly (p <0.01 to p <0.001) inhibited GIP-stimulated cAMP production and cellular insulin secretion. Furthermore, acute administration of (Pro(3))GIPLys(16)PAL also significantly (p <0.05 to p <0.001) countered the glucose-lowering and insulin-releasing actions of GIP in ob/ob mice. Daily injection of (Pro(3))GIPLys(16)PAL (25 nmol/kg bw) in 14-18-week-old ob/ob mice over 14 days had no effect on body weight, food intake or non-fasting plasma glucose and insulin concentrations. (Pro(3))GIPLys(16)PAL treatment also failed to significantly alter the glycaemic response to an i.p. glucose load or test meal, but insulin concentrations were significantly reduced (1.5-fold; p <0.05) after the glucose load. Insulin sensitivity was enhanced (1.3-fold; p <0.05) and pancreatic insulin was significantly reduced (p <0.05) in the (Pro(3))GIPLys(16)PAL-treated mice. These data demonstrate that acylation of Lys(16) with palmitic acid in (Pro(3))GIP does not improve its biological effectiveness as a GIP receptor antagonist.
Resumo:
Dipeptidyl peptidase IV (DPP IV) is a widely distributed physiological enzyme that can be found solubilized in blood, or membrane-anchored in tissues. DPP IV and related dipeptidase enzymes cleave a wide range of physiological peptides and have been associated with several disease processes including Crohn's disease, chronic liver disease, osteoporosis, multiple sclerosis, eating disorders, rheumatoid arthritis, cancer, and of direct relevance to this review, type 2 diabetes. Here, we place particular emphasis on two peptide substrates of DPP IV with insulin-releasing and antidiabetic actions namely, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). The rationale for inhibiting DPP IV activity in type 2 diabetes is that it decreases peptide cleavage and thereby enhances endogenous incretin hormone activity. A multitude of novel DPP IV inhibitor compounds have now been developed and tested. Here we examine the information available on DPP IV and related enzymes, review recent preclinical and clinical data for DPP IV inhibitors, and assess their clinical significance.
Resumo:
Aims/hypothesis. We aimed to describe the frequency and degree of diabetic ketoacidosis in children across Europe at the time of diagnosis of Type I (insulin-dependent) diabetes mellitus and to determine if factors such as age and geographical region contribute to the risk of diabetic ketoacidosis.
Effects of nateglinide on the secretion of glycated insulin and glucose tolerance in type 2 diabetes
Resumo:
Aims: Glycation of insulin has been demonstrated within pancreatic beta-cells and the resulting impaired bioactivity may contribute to insulin resistance in diabetes. We used a novel radioimmunoassay to evaluate the effect of nateglinide on plasma concentrations of glycated insulin and glucose tolerance in type 2 diabetes. Methods. Ten patients (5 M/5 F, age 57.8 +/- 1.9 years, HbA(1c), 7.6 +/- 0.5%,, fasting plasma glucose 9.4 +/- 1.2 mmol/l, creatinine 81.6 +/- 4.5 mumol/l) received oral nateglinide 120 mg or placebo, 10 min prior to 75 g oral glucose in a random, single blind, crossover design, 1 week apart. Blood samples were taken for glycated insulin, glucose, insulin and C-peptide over 225 min. Results: Plasma glucose and glycated insulin responses were reduced by 9% (P = 0.005) and 38% (P = 0.047), respectively, following nateglinide compared with placebo. Corresponding AUC measures for insulin and C-peptide were enhanced by 36% (P = 0.005) and 25% (P = 0.007) by nateglinide. Conclusions: Glycated insulin in type 2 diabetes is reduced in response to the insulin secretagogue nateglinide, resulting in preferential release of native insulin. Since glycated insulin exhibits impaired biological activity, reduced glycated insulin release may contribute to the anti hyperglycaemic action of nateglinide. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Despite familial clustering of nephropathy and retinopathy severity in type 1 diabetes, few gene variants have been consistently associated with these outcomes.
Resumo:
Rationale, aims and objective To investigate whether the introduction of a programme of optimising drug treatment, intensive education and self-monitoring of patients diagnosed with gestational diabetes mellitus (GDM) at an early stage (