317 resultados para Titânio c.p.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite recent therapeutic improvements, the clinical course of diffuse large B-cell lymphoma (DLBCL) still differs considerably among patients. We conducted this retrospective multi-centre study to evaluate the impact of genomic aberrations detected using a high-density genome wide-single nucleotide polymorphism-based array on clinical outcome in a population of DLBCL patients treated with R-CHOP-21 (rituximab, cyclophosphamide, doxorubicine, vincristine and prednisone repeated every 21_d). 166 DNA samples were analysed using the GeneChip Human Mapping 250K NspI. Genomic anomalies were analysed regarding their impact on the clinical course of 124 patients treated with R-CHOP-21. Unsupervised clustering was performed to identify genetically related subgroups of patients with different clinical outcomes. Twenty recurrent genetic lesions showed an impact on the clinical course. Loss of genomic material at 8p23.1 showed the strongest statistical significance and was associated with additional aberrations, such as 17p- and 15q-. Unsupervised clustering identified five DLBCL clusters with distinct genetic profiles, clinical characteristics and outcomes. Genetic features and clusters, associated with a different outcome in patients treated with R-CHOP, have been identified by arrayCGH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a new algorithm for exactly solving decision making problems represented as influence diagrams. We do not require the usual assumptions of no forgetting and regularity; this allows us to solve problems with simultaneous decisions and limited information. The algorithm is empirically shown to outperform a state-of-the-art algorithm on randomly generated problems of up to 150 variables and 10^64 solutions. We show that these problems are NP-hard even if the underlying graph structure of the problem has low treewidth and the variables take on a bounded number of states, and that they admit no provably good approximation if variables can take on an arbitrary number of states.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Credal networks provide a scheme for dealing with imprecise probabilistic models. The inference algorithms often used in credal networks compute the interval of the posterior probability of an event of interest given evidence of the specific kind -- evidence that describe the current state of a set of variables. These algorithms do not perform evidential reasoning in case of the evidence must be processed according to the conditioning rule proposed by RC Jeffrey. This paper describes a procedure to integrate evidence with Jeffrey's rule when performing inferences with credal nets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Retrospective clinical datasets are often characterized by a relatively small sample size and many missing data. In this case, a common way for handling the missingness consists in discarding from the analysis patients with missing covariates, further reducing the sample size. Alternatively, if the mechanism that generated the missing allows, incomplete data can be imputed on the basis of the observed data, avoiding the reduction of the sample size and allowing methods to deal with complete data later on. Moreover, methodologies for data imputation might depend on the particular purpose and might achieve better results by considering specific characteristics of the domain. The problem of missing data treatment is studied in the context of survival tree analysis for the estimation of a prognostic patient stratification. Survival tree methods usually address this problem by using surrogate splits, that is, splitting rules that use other variables yielding similar results to the original ones. Instead, our methodology consists in modeling the dependencies among the clinical variables with a Bayesian network, which is then used to perform data imputation, thus allowing the survival tree to be applied on the completed dataset. The Bayesian network is directly learned from the incomplete data using a structural expectation–maximization (EM) procedure in which the maximization step is performed with an exact anytime method, so that the only source of approximation is due to the EM formulation itself. On both simulated and real data, our proposed methodology usually outperformed several existing methods for data imputation and the imputation so obtained improved the stratification estimated by the survival tree (especially with respect to using surrogate splits).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hidden Markov models (HMMs) are widely used models for sequential data. As with other probabilistic graphical models, they require the specification of precise probability values, which can be too restrictive for some domains, especially when data are scarce or costly to acquire. We present a generalized version of HMMs, whose quantification can be done by sets of, instead of single, probability distributions. Our models have the ability to suspend judgment when there is not enough statistical evidence, and can serve as a sensitivity analysis tool for standard non-stationary HMMs. Efficient inference algorithms are developed to address standard HMM usage such as the computation of likelihoods and most probable explanations. Experiments with real data show that the use of imprecise probabilities leads to more reliable inferences without compromising efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Credal nets are probabilistic graphical models which extend Bayesian nets to cope with sets of distributions. This feature makes the model particularly suited for the implementation of classifiers and knowledge-based systems. When working with sets of (instead of single) probability distributions, the identification of the optimal option can be based on different criteria, some of them eventually leading to multiple choices. Yet, most of the inference algorithms for credal nets are designed to compute only the bounds of the posterior probabilities. This prevents some of the existing criteria from being used. To overcome this limitation, we present two simple transformations for credal nets which make it possible to compute decisions based on the maximality and E-admissibility criteria without any modification in the inference algorithms. We also prove that these decision problems have the same complexity of standard inference, being NP^PP-hard for general credal nets and NP-hard for polytrees.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents new results for the (partial) maximum a posteriori (MAP) problem in Bayesian networks, which is the problem of querying the most probable state configuration of some of the network variables given evidence. It is demonstrated that the problem remains hard even in networks with very simple topology, such as binary polytrees and simple trees (including the Naive Bayes structure), which extends previous complexity results. Furthermore, a Fully Polynomial Time Approximation Scheme for MAP in networks with bounded treewidth and bounded number of states per variable is developed. Approximation schemes were thought to be impossible, but here it is shown otherwise under the assumptions just mentioned, which are adopted in most applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a new algorithm for exactly solving decision making problems represented as influence diagrams. We do not require the usual assumptions of no forgetting and regularity; this allows us to solve problems with simultaneous decisions and limited information. The algorithm is empirically shown to outperform a state-of-the-art algorithm on randomly generated problems of up to 150 variables and 10^64 solutions. We show that the problem is NP-hard even if the underlying graph structure of the problem has small treewidth and the variables take on a bounded number of states, but that a fully polynomial time approximation scheme exists for these cases. Moreover, we show that the bound on the number of states is a necessary condition for any efficient approximation scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we present TANC, i.e., a tree-augmented naive credal classifier based on imprecise probabilities; it models prior near-ignorance via the Extreme Imprecise Dirichlet Model (EDM) (Cano et al., 2007) and deals conservatively with missing data in the training set, without assuming them to be missing-at-random. The EDM is an approximation of the global Imprecise Dirichlet Model (IDM), which considerably simplifies the computation of upper and lower probabilities; yet, having been only recently introduced, the quality of the provided approximation needs still to be verified. As first contribution, we extensively compare the output of the naive credal classifier (one of the few cases in which the global IDM can be exactly implemented) when learned with the EDM and the global IDM; the output of the classifier appears to be identical in the vast majority of cases, thus supporting the adoption of the EDM in real classification problems. Then, by experiments we show that TANC is more reliable than the precise TAN (learned with uniform prior), and also that it provides better performance compared to a previous (Zaffalon, 2003) TAN model based on imprecise probabilities. TANC treats missing data by considering all possible completions of the training set, but avoiding an exponential increase of the computational times; eventually, we present some preliminary results with missing data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Influence diagrams allow for intuitive and yet precise description of complex situations involving decision making under uncertainty. Unfortunately, most of the problems described by influence diagrams are hard to solve. In this paper we discuss the complexity of approximately solving influence diagrams. We do not assume no-forgetting or regularity, which makes the class of problems we address very broad. Remarkably, we show that when both the treewidth and the cardinality of the variables are bounded the problem admits a fully polynomial-time approximation scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents new results for the (partial) maximum a posteriori (MAP) problem in Bayesian networks, which is the problem of querying the most probable state configuration of some of the network variables given evidence. First, it is demonstrated that the problem remains hard even in networks with very simple topology, such as binary polytrees and simple trees (including the Naive Bayes structure). Such proofs extend previous complexity results for the problem. Inapproximability results are also derived in the case of trees if the number of states per variable is not bounded. Although the problem is shown to be hard and inapproximable even in very simple scenarios, a new exact algorithm is described that is empirically fast in networks of bounded treewidth and bounded number of states per variable. The same algorithm is used as basis of a Fully Polynomial Time Approximation Scheme for MAP under such assumptions. Approximation schemes were generally thought to be impossible for this problem, but we show otherwise for classes of networks that are important in practice. The algorithms are extensively tested using some well-known networks as well as random generated cases to show their effectiveness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Credal nets generalize Bayesian nets by relaxing the requirement of precision of probabilities. Credal nets are considerably more expressive than Bayesian nets, but this makes belief updating NP-hard even on polytrees. We develop a new efficient algorithm for approximate belief updating in credal nets. The algorithm is based on an important representation result we prove for general credal nets: that any credal net can be equivalently reformulated as a credal net with binary variables; moreover, the transformation, which is considerably more complex than in the Bayesian case, can be implemented in polynomial time. The equivalent binary credal net is updated by L2U, a loopy approximate algorithm for binary credal nets. Thus, we generalize L2U to non-binary credal nets, obtaining an accurate and scalable algorithm for the general case, which is approximate only because of its loopy nature. The accuracy of the inferences is evaluated by empirical tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the estimation of parameters of a Bayesian network from incomplete data. The task is usually tackled by running the Expectation-Maximization (EM) algorithm several times in order to obtain a high log-likelihood estimate. We argue that choosing the maximum log-likelihood estimate (as well as the maximum penalized log-likelihood and the maximum a posteriori estimate) has severe drawbacks, being affected both by overfitting and model uncertainty. Two ideas are discussed to overcome these issues: a maximum entropy approach and a Bayesian model averaging approach. Both ideas can be easily applied on top of EM, while the entropy idea can be also implemented in a more sophisticated way, through a dedicated non-linear solver. A vast set of experiments shows that these ideas produce significantly better estimates and inferences than the traditional and widely used maximum (penalized) log-likelihood and maximum a posteriori estimates. In particular, if EM is adopted as optimization engine, the model averaging approach is the best performing one; its performance is matched by the entropy approach when implemented using the non-linear solver. The results suggest that the applicability of these ideas is immediate (they are easy to implement and to integrate in currently available inference engines) and that they constitute a better way to learn Bayesian network parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper strengthens the NP-hardness result for the (partial) maximum a posteriori (MAP) problem in Bayesian networks with topology of trees (every variable has at most one parent) and variable cardinality at most three. MAP is the problem of querying the most probable state configuration of some (not necessarily all) of the network variables given evidence. It is demonstrated that the problem remains hard even in such simplistic networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers inference from multinomial data and addresses the problem of choosing the strength of the Dirichlet prior under a mean-squared error criterion. We compare the Maxi-mum Likelihood Estimator (MLE) and the most commonly used Bayesian estimators obtained by assuming a prior Dirichlet distribution with non-informative prior parameters, that is, the parameters of the Dirichlet are equal and altogether sum up to the so called strength of the prior. Under this criterion, MLE becomes more preferable than the Bayesian estimators at the increase of the number of categories k of the multinomial, because non-informative Bayesian estimators induce a region where they are dominant that quickly shrinks with the increase of k. This can be avoided if the strength of the prior is not kept constant but decreased with the number of categories. We argue that the strength should decrease at least k times faster than usual estimators do.