203 resultados para Specific conductance
Resumo:
The immunogenicity of proteins encapsulated in poly(DL-lactide-co-glycolide) (PLG) microspheres has not been investigated to any extent in large animal models. In this study, IgG and IgA responses to ovalbumin (OVA), encapsulated in microspheres was investigated following intranasal inoculation into calves. Scanning electron microscopy and flow cytometric analysis demonstrated a uniform microsphere population with a diameter of <2.5 micrometers. Ovalbumin was released steadily from particles stored in PBS almost in a linear fashion, and after 4 weeks many particles showed cracks and fissures in their surface structure. Following intranasal inoculation of calves with different doses of encapsulated antigen, mean levels of ovalbumin-specific IgA were observed to increase steadily but significant differences in IgA levels (from the pre-inoculation level) were only observed following a second intranasal inoculation. With 0.5 and 1.0mg doses of antigen, ovalbumin-specific IgG was also detected in serum. Ovalbumin-specific IgA persisted in nasal secretions for a considerable period of time and were still detectable in four out of seven animals, 6 months after inoculation.
Resumo:
The aim of the present study was to compare the motor function of a clinical sample of children with specific language impairment (SLI) to a language-matched comparison group that had not been referred for SLI assessment. A typical language comparison group with similar nonverbal IQ was also included. There were approximately 35 children in each group, aged 9- to 10-years-old, and the children completed a range of standardised language, motor and literacy measures. The results showed that the SLI group scored significantly lower than the language-matched and typical language comparison groups on all of the motor and literacy measures. We conclude that language factors alone are insufficient to explain the extensive comorbid motor and literacy deficits shown by the children with SLI in this study. We suggest that the clinical diagnosis of SLI may be influenced by the presence of additional developmental difficulties, which should be made explicit in assessment procedures, and that intervention strategies which address the broad range of difficulties experienced by children with a clinical diagnosis of SLI, should be prioritised.
Resumo:
A biochip based on surface plasmon resonance was fabricated to detect prostate specific antigen-a1-antichymotrypsin (PSA-ACT complex) in both HBS buffer and human serum. To reduce non-specific binding and steric hindrance effect, the chemical surface of the sensor chips was constructed by using various oligo(ethylene glycol) mixtures of different molar ratios of HS(CH2)11(OCH2CH2)6OCH2COOH and HS(CH2)11(OCH2CH2)3OH. The self-assembled monolayers were biotinylated to facilitate the immobilization of streptavidin. Using the chip surfaces, PSA-ACT complex in HBS buffer and human serum was detected at 20.7 and 47.5 ng/ml by primary immunoresponse, respectively. However, the limit of detection could be simply enhanced by a sandwich strategy to improve the sensitivity and specificity of the immunoassay. An intact PSA polyclonal antibody was used as an amplifying agent in the strategy. As a result, PSA-ACT complex concentrations as low as 10.2 and 18.1 ng/ml were found in the HBS buffer and human serum sample, respectively. The result indicates that this approach could satisfy our goal without modifying the secondary interactant.
Resumo:
Prostate specific antigen-a1-antichymotrypsin was detected by a double-enhancement strategy involving the exploitation of both colloidal gold nanoparticles (AuNPs) and precipitation of an insoluble product formed by HRP biocatalyzed oxidation. The AuNPs were synthesized and conjugated with horse-radish peroxidase-PSA polyclonal antibody by physisorption. Using the protein-colloid for SPR-based detection of the PSA/ACT complex showed their enhancement as being consistent with other previous studies with regard to AuNPs enhancement, while the enzyme precipitation using DAB substrate was applied for the first time and greatly amplified the signal. The limit of detection was found at as low as 0.027 ng/ml of the PSA/ACT complex (or 300 fM), which is much higher than that of previous reports. This study indicates another way to enhance SPR measurement, and it is generally applicable to other SPR-based immunoassays.
Resumo:
Pollen tube growth is dependent on a dynamic actin cytoskeleton, suggesting that actin-regulating proteins are involved. We have examined the regulation of the lily pollen-specific actin-depolymerizing factor (ADF) LIADF1. Its actin binding and depolymerizing activity is pH sensitive, inhibited by certain phosphoinositides, but not controlled by phosphorylation. Compared with its F-actin binding properties, its low activity in depolymerization assays has been used to explain why pollen ADF decorates F-actin in pollen grains. This low activity is incompatible with a role in increasing actin dynamics necessary to promote pollen tube growth. We have identified a plant homolog of actin-interacting protein, AIP1, which enhances the depolymerization of F-actin in the presence of LIADF1 by similar to60%. Both pollen ADF and pollen AIP1 bind F-actin in pollen grains but are mainly cytoplasmic in pollen tubes. Our results suggest that together these proteins remodel actin filaments as pollen grains enter and exit dormancy.
Resumo:
We have examined the interaction of recombinant lily pollen ADF, LIADF1, with actin and found that whilst it bound both G- and F-actin, it had a much smaller effect on the polymerization and depolymerization rate constants than the maize vegetative ADF, ZmADF3. An antiserum specific to pollen ADF, antipADF, was raised and used to localize pollen ADF in daffodil - a plant in which massive reorganizations of the actin cytoskeleton have been seen to occur as pollen enters and exits dormancy. We show, for the first time, an ADF decorating F-actin in cells that did not result from artificial increase in ADF concentration. In dehydrated pollen this ADF:actin array is replaced by actin:ADF rodlets and aggregates of actin, which presumably act as a storage form of actin during dormancy. In germinated pollen ADF has no specific localization, except when an adhesion is made at the tip where actin and ADF now co-localize. These activities of pollen ADF are discussed with reference to the activities of ZmADF3 and other members of the ADF/cofilin group of proteins.
Resumo:
A repressor of the transition to flowering in Arabidopsis is the MADS box protein FLOWERING LOCUS C (FLC). FCA, an RNA-binding protein, and FY, a homolog of the yeast RNA 3' processing factor Pfs2p, downregulate FLC expression and therefore promote flowering. FCA/FY physically interact and alter polyadenylation/3' processing to negatively autoregulate FCA. Here, we show that FCA requires FLOWERING LOCUS D (FLD), a homolog of the human lysine-specific demethylase 1 (LSD1) for FLC downregulation. FCA also partially depends on DICER-LIKE 3, involved in chromatin silencing. fca mutations increased levels of unspliced sense FLC transcript, altered processing of antisense FLC transcripts, and increased H3K4 dimethylation in the central region of FLC. These data support a close association of FCA and FLD in mediating H3K4 demethylation and thus transcriptional silencing of FLC and reveal roles for antisense RNA processing and DCL3 function in this regulation.
Resumo:
Stratified approaches to treating disease are very attractive, as efficacy is maximised by identifying responders using a companion diagnostic or by careful phenotyping. This approach will spare non-responders form potential side-effects. This has been pioneered in oncology where single genes or gene signatures indicate tumours that will respond to specific chemotherapies. Stratified approaches to the treatment of asthma with biological therapies are currently being extensively studied. In cystic fibrosis (CF), therapies have been developed that are targeted at specific functional classes of mutations. Ivacaftor, the first of such therapies, potentiates dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) protein Class III mutations and is now available in the USA and some European countries. Pivotal studies in patients with a G551D mutation, the most common Class III mutation, have demonstrated significant improvements in clinically important outcomes such as spirometry and exacerbations. Sweat chloride was significantly reduced demonstrating a functional effect on the dysfunctional CFTR protein produced by the G551D mutation. Symptom scores are also greatly improved to a level that indicates that this is a transformational treatment for many patients. This stratified approach to the development of therapies based on the functional class of the mutations in CF is likely to lead to new drugs or combinations that will correct the basic defect in many patients with CF. © ERS 2013.
Resumo:
Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects.
Resumo:
The increased interconnectivity and complexity of supervisory control and data acquisition (SCADA) systems in power system networks has exposed the systems to a multitude of potential vulnerabilities. In this paper, we present a novel approach for a next-generation SCADA-specific intrusion detection system (IDS). The proposed system analyzes multiple attributes in order to provide a comprehensive solution that is able to mitigate varied cyber-attack threats. The multiattribute IDS comprises a heterogeneous white list and behavior-based concept in order to make SCADA cybersystems more secure. This paper also proposes a multilayer cyber-security framework based on IDS for protecting SCADA cybersecurity in smart grids without compromising the availability of normal data. In addition, this paper presents a SCADA-specific cybersecurity testbed to investigate simulated attacks, which has been used in this paper to validate the proposed approach.
Resumo:
Purpose. Processing of information through the cellular layers of the retina occurs in a serial manner. In the electroretinogram (ERG), this complicates interpretation of inner retinal changes as dysfunction may arise from "upstream" neurons or may indicate a direct loss to that neural generator. We propose an approach that addresses this issue by defining ERG gain relationships.
Methods. Regression analyses between two serial ERG parameters in a control cohort of rats are used to define gain relationships. These gains are then applied to two models of retinal disease.
Results. The PIIIamp to PIIamp gain is unity whereas the PIIamp to pSTRamp and PIIamp to nSTRamp gains are greater than unity, indicating "amplification" (P <0.05). Timing relationships show amplification between PIIIit to PIIit and compression for PIIit to pSTRit and PIIit to nSTRit, (P <0.05). Application of these gains to ?-3-deficiency indicates that all timing changes are downstream of photoreceptor changes, but a direct pSTR amplitude loss occurs (P <0.05). Application to diabetes indicates widespread inner retinal dysfunction which cannot be attributed to outer retinal changes (P <0.05).
Conclusions. This simple approach aids in the interpretation of inner retinal ERG changes by taking into account gain characteristics found between successive ERG components of normal animals.
Resumo:
To re-examine the correlation between mtDNA variability and longevity, we examined mtDNAs from samples obtained from over 2200 ultranonagenarians (and an equal number of controls) collected within the framework of the GEHA EU project. The samples were categorized by high-resolution classification, while about 1300 mtDNA molecules (650 ultranonagenarians and an equal number of controls) were completely sequenced. Sequences, unlike standard haplogroup analysis, made possible to evaluate for the first time the cumulative effects of specific, concomitant mtDNA mutations, including those that per se have a low, or very low, impact. In particular, the analysis of the mutations occurring in different OXPHOS complex showed a complex scenario with a different mutation burden in 90+ subjects with respect to controls. These findings suggested that mutations in subunits of the OXPHOS complex I had a beneficial effect on longevity, while the simultaneous presence of mutations in complex I and III (which also occurs in J subhaplogroups involved in LHON) and in complex I and V seemed to be detrimental, likely explaining previous contradictory results. On the whole, our study, which goes beyond haplogroup analysis, suggests that mitochondrial DNA variation does affect human longevity, but its effect is heavily influenced by the interaction between mutations concomitantly occurring on different mtDNA genes