432 resultados para Planing-mills
Resumo:
Different plasticizers, including phosphate-, phthalate-and adipate-based types were used in the creation of a range of colorimetric plastic film sensors for CO2, The different types of plasticizer used in the formulation of a colorimetric plastic film sensor for CO2 affect the response and recovery times of the sensor differently, An effective plasticizer was taken as one that decreased the response and recovery times of the final film sensor when exposed to an alternating atmosphere of 0-5% CO2. On this basis, the most efficient plasticizers appeared to be phosphate-based, followed by phthalate- and adipate-based plasticizers, This trend appears to reflect the degree of the polymer-plasticizer compatibility. Increasing the amount of plasticizer in the film formulation decreased the response and recovery times of the sensor dramatically, The sensitivity of the film sensor towards CO2 appears to decrease with increasing plasticizer effectiveness; thus, the general order of film CO2 sensitivity with respect to plasticizer type was found to be adipate > phthalate > phosphate. In general, the response of the optical films towards CO2 was found to be temperature sensitive [typically, Delta H = -(44-55) kJ mol(-1)], The phosphate-based plasticized films appear to be less temperature sensitive than the other plasticized films, and 2-ethylhexyl diphenylphosphate appears particularly effective in this respect (Delta H = -18.5 kJ mol(-1)).
Resumo:
The preparation and characterization of three different plastic thin-film colorimetric sensors for gaseous ammonia is described. In the film sensors, the neutral form of a pH-sensitive dye (Bromophenol Blue, Bromocresol Green or Chlorophenol Red) was encapsulated in a plastic medium, either poly(vinyl butyral) or ethylcellulose plasticized with tributyl phosphate. Each of these film optodes gave a reproducible and reversible response towards gaseous ammonia. The sensitivity of the film sensors towards ammonia was found to be strongly dependent upon the pK(a) of the encapsulated dye. Thus, the film with Chlorophenol Red (pK(a) = 6.25), proved to be very insensitive (operating range: 0.29%
Resumo:
The initial rate of oxidation of octan-2-ol and other secondary alcohols to their ketones with NaBrO3, mediated by RuO4 in an aqueous-CCl4 biphasic system, is greater with ultrasonic irradiation than by stirring alone. Under ultrasonic irradiation the initial rate of oxidation of octan-2-ol increases with increasing % duty cycle, [RuO4] and [NaBrO3]. The kinetics of alcohol oxidation appear to be closely linked with the oxidative dissolution of RuO2 to RuO4 by NaBrO3. The observed enhancement in rate with ultrasonic irradiation appear to be association, at least in part, with the increase in interfacial surface area via the formation of an emulsion of aqueous microdroplets containing NaBrO3 in the CCl4 layer containing the non-water-soluble secondary alcohol.
Resumo:
Ultrasound promotes the reduction of hexacyanoferrate(III) by thiosulfate ions mediated by RuO2 . xH(2)O under diffusion-controlled conditions. There is a strong correlation between the measured first-order rate constant and the absorbance of the dispersion, which, in turn, is closely related to the specific surface area of the catalyst. The enhancement in rate with ultrasonic irradiation appears to be largely associated with the dispersive action of the ultrasound on the aggregated particles of RuO2 . xH(2)O. The rate of reaction increases with increasing %duty cycle and ultrasonic intensity. The measured overall activation energies for the reaction with and without ultrasound, i.e. 18 +/- 1 and 20 +/- 1 kJ mol(-1), respectively, are very similar to those expected for a diffusion-controlled reaction. The homogeneous reaction is not promoted by ultrasound.
Resumo:
The oxidation of water to oxygen by bromate ions is mediated by the heterogeneous redox catalyst ruthenium-Adams, a high surface area and very stable form of ruthenium(IV) oxide. The initial kinetics of catalysis are investigated as a function of [BrO3-], [Ru-Adams], temperature and [anion], where ''anion'' = ClO4- Cl- or Br-. An electrochemical model of heterogeneous redox catalysis, in which the two participating redox couples are both electrochemically irreversible, is used to interpret most of the kinetic data. The observed inhibition of the initial rate of the redox reaction by Cl- and, especially, Br- ions is tentatively attributed to competitive adsorption. In the presence of organic species, such as methanol, ethanol and propan-1-ol, which are more easily oxidised than water by bromate ions, the rate of BrO3- ion reduction is significantly faster, i.e. ca 24-34 times.
Resumo:
The yield of substituted benzaldehydes and benzoic acids formed by the aerial oxidation of a range of substituted toluenes photocatalysed by titanium dioxide in acetonitrile is dramatically improved by the addition of small amounts of sulfuric acid.
Resumo:
The variation in the activation energy for the initial stage of photomineralization of 4-chlorophenol (4-CP), sensitized by Degussa P25 TiO2 was investigated as a function of P-O2 and [4-CP]. A model was developed based on the incorporation of Arrhenius-type functions in a general rate equation for the initial stage of photomineralization. Values of the essential constants in the model were derived from a few simple experiments. Positive, negative and zero apparent activation energies were predicted using the model, and verified experimentally, under moderate reaction conditions. The general applicability of the model is briefly discussed.
Resumo:
TiO2 coated glass shows excellent stability in the range pH 2-9, however, there is rapid and complete stripping of the TiO2 coating between pH 11 and 12.
Resumo:
The photocatalytic efficiencies of laboratory made and commercial TiO2 samples were compared using a standard test reaction: the photomineralization of 4-chlorophenol (4-CP) to CO2, H2O and HCl mediated by Degussa P25 TiO2 in a batch reactor. The results show that the rate of photodegradation of 4-CP, sensitized by a sample of TiO2, shows no clear simple dependence on physical characteristics such as the degree of crystallinity, the surface area and the percentage of H2O.
Resumo:
The kinetics of the photomineralization of salicylic acid (SA) sensitized by Degussa P25 titanium dioxide (TiO2) dispersions in oxygenated aqueous solution are reported as a function of the following experimental parameters: [TiO2], percentage of O-2, [SA], temperature (T) and light intensity (I). The kinetics of SA photomineralization conform to a Langmuir-Hinshelwood kinetic scheme with SA and O-2 adsorbed at different sites with apparent Langmuir adsorption coefficients of (6.1 +/- 1.2) x 10(4) mol(-1) dm(3) and 0.061 +/- 0.007 kPa(-1) respectively. The overall activation energy for the system was determined as 4.6 +/- 0.2 kJ mol(-1). Two major stable reaction intermediates are identified (dihydroxybenzoic acids (DHBA) and catechol (C)) and the existence of a further pathway involving one or more very unstable and, as yet, unidentified reaction intermediates is proposed. A kinetic model is presented which describes the temporal behaviour of the concentrations of SA, CO2 and the major photogenerated intermediates (DHBA and C). This model is used to predict successfully the temporal behaviour of the major intermediates in the photomineralization of SA under non-standard conditions.
Resumo:
Plasticized and unplasticized polymer colorimetric film sensors for gaseous CO2, containing the dye m-cresol purple, are tested as sensors for dissolved CO2. The plasticized polymer m-cresol purple film sensor develops a measurable degree of opacity when exposed to aqueous solution, especially in neutral, compared with alkaline, solution. However, it is shown that a presoaked, fogged plasticized polymer m-cresol purple film does function as a quantitative sensor for dissolved CO2 over the range 0-4% CO2. An unplasticized polymer m-cresol purple film remains largely dear upon exposure to aqueous solution and also functions as a quantitative sensor for dissolved CO2 over the range 0-4% CO2. However, in both types of films the dye interacts with electrolytes present in solution; invariably the dye appears to be converted from its initial deprotonated form (blue) to its protonated form (yellow) and the rate of this process appears to increase with increasing ionic strength, anionic charge and decreasing pH. The 90% response and recovery times for an unplasticized film are determined as 19 s(CO2:0-->5%) and 21 s (CO2:5-->3.6%), respectively.
Resumo:
The kinetics of reductive dissolution of NaBiO3, by Mn-II and Ce-III ions are studied as a function of [Mn-II] or [Ce-III], [Bi-III], [H+] and temperature. They fit a simple inverse-cubic rate law and can be readily interpreted using a mechanism in which the rate-determining step is the reaction between an adsorbed reducing species (i.e. a Mn-II or Ce-III ion) and its associated surface site; protonation of the surface site promotes the rate of reaction. The rate of dissolution decreases with increasing initial concentration of Bi-III ions owing to competitive inhibition by the latter species. A kinetic model, based on this mechanism, is applied and provides a quantitative description of the observed kinetics.
Resumo:
C-60 is more effective than graphite or diamond as a redox catalyst for the oxidation of chloride to chlorine by cerie ions.