207 resultados para PV test facility
Resumo:
Laser accelerated proton beams have been proposed to be used in different research fields. A great interest has risen for the potential replacement of conventional accelerating machines with laser-based accelerators, and in particular for the development of new concepts of more compact and cheaper hadrontherapy centers. In this context the ELIMED (ELI MEDical applications) research project has been launched by INFN-LNS and ASCR-FZU researchers within the pan-European ELI-Beamlines facility framework. The ELIMED project aims to demonstrate the potential clinical applicability of optically accelerated proton beams and to realize a laser-accelerated ion transport beamline for multi-disciplinary user applications. In this framework the eye melanoma, as for instance the uveal melanoma normally treated with 62 MeV proton beams produced by standard accelerators, will be considered as a model system to demonstrate the potential clinical use of laser-driven protons in hadrontherapy, especially because of the limited constraints in terms of proton energy and irradiation geometry for this particular tumour treatment. Several challenges, starting from laser-target interaction and beam transport development up to dosimetry and radiobiology, need to be overcome in order to reach the ELIMED final goals. A crucial role will be played by the final design and realization of a transport beamline capable to provide ion beams with proper characteristics in terms of energy spectrum and angular distribution which will allow performing dosimetric tests and biological cell irradiation. A first prototype of the transport beamline has been already designed and other transport elements are under construction in order to perform a first experimental test with the TARANIS laser system by the end of 2013. A wide international collaboration among specialists of different disciplines like Physics, Biology, Chemistry, Medicine and medical doctors coming from Europe, Japan, and the US is growing up around the ELIMED project with the aim to work on the conceptual design, technical and experimental realization of this core beamline of the ELI Beamlines facility. © 2013 SPIE.
Resumo:
Does the use of HRM practices by multinational companies (MNCs) reflect their national origins or are practices similar regardless of context? To the extent that practices are similar, is there any evidence of global best standards? The authors use the system, societal, and dominance framework to address these questions through analysis of 1,100 MNC subsidiaries in Canada, Ireland, Spain, and the United Kingdom. They argue that this framework offers a richer account than alternatives such as varieties of capitalism. The study moves beyond previous research by differentiating between system effects at the global level and dominance effects arising from the diffusion of practices from a dominant economy. It shows that both effects are present, as are some differences at the societal level. Results suggest that MNCs configure their HRM practices in response to all three forces rather than to some uniform global best practices or to their national institutional contexts.
Resumo:
The hybrid test method is a relatively recently developed dynamic testing technique that uses numerical modelling combined with simultaneous physical testing. The concept of substructuring allows the critical or highly nonlinear part of the structure that is difficult to numerically model with accuracy to be physically tested whilst the remainder of the structure, that has a more predictable response, is numerically modelled. In this paper, a substructured soft-real time hybrid test is evaluated as an accurate means of performing seismic tests of complex structures. The structure analysed is a three-storey, two-by-one bay concentrically braced frame (CBF) steel structure subjected to seismic excitation. A ground storey braced frame substructure whose response is critical to the overall response of the structure is tested, whilst the remainder of the structure is numerically modelled. OpenSees is used for numerical modelling and OpenFresco is used for the communication between the test equipment and numerical model. A novel approach using OpenFresco to define the complex numerical substructure of an X-braced frame within a hybrid test is also presented. The results of the hybrid tests are compared to purely numerical models using OpenSees and a simulated test using a combination of OpenSees and OpenFresco. The comparative results indicate that the test method provides an accurate and cost effective procedure for performing
full scale seismic tests of complex structural systems.
Resumo:
When a subject is heated, the stimulation of temperature-sensitive nerve endings in the skin, and the raising of the central body temperature, results in the reflex release of sympathetic vasoconstrictor tone in the skin of the extremities, causing a measurable temperature increase at the site of release. In the sympathetic release test, the subject is gently heated by placing the feet and calves in a commercially available foot warming pouch or immersing the feet and calves in warm water and wrapping the subject in blankets. Skin blood flow is estimated from measurements of skin temperature in the fingers. Normally skin temperature of the fingers is 65-75 degrees F in cool conditions (environmental temperature: 59-68 degrees F) and rises to 85-95 degrees F during body heating. Deviations in this pattern may mean that there is abnormal sympathetic vasoconstrictor control of skin blood flow. Abnormal skin blood flow can substantially impair an individual's ability to thermoregulate and has important clinical implications. During whole body heating, the skin temperature from three different skin sites is monitored and oral temperature is monitored as an index of core temperature. Students determine the fingertip temperature at which the reflex release of sympathetic activity occurs and its maximal attainment, which reflects the vasodilating capacity of this cutaneous vascular bed. Students should interpret typical sample data for certain clinical conditions (Raynaud's disease, peripheral vascular disease, and postsympathectomy) and explain why there may be altered skin blood flow in these disorders.
Resumo:
The non-destructive evaluation of the water permeability of concrete structures is a long standing challenge, principally due to the difficulty of achieving a uni-direction flow for computing the water permeability coefficient. The use of a guard ring (GR) was originally proposed for the in situ sorptivity test, but little information can be found for the water permeability test. In this study, the effect of a GR was carefully examined through the flow simulation, which was verified by carrying out experiments. It was observed that the GR can confine the flow near the surface, but cannot achieve a uni-directional flow across the whole depth of flow. To achieve a better performance, it is essential to consider the effects of the size of the inner seal and the GR and the significant interaction between these two. The analysis of the experimental data has indicated that the GR influences the flow for porous concretes, but there is no significant effect for dense concretes. Further investigation, validated using the flow-net theory, has shown a strong correlation between the water permeability coefficients obtained with the GR (K w-GR) and without it (K w-No GR), suggesting that one dimensional flow is not essential for interpreting data for site tests. Another practical issue was that more than 30 % of the tests with GR failed due to the difficulty of achieving a good seal between the inner and the outer chambers. Based on the work reported in this paper, a new water permeability test is proposed.
Resumo:
The increased complexity and interconnectivity of Supervisory Control and Data Acquisition (SCADA) systems in the Smart Grid has exposed them to a wide range of cyber-security issues, and there are a multitude of potential access points for cyber attackers. This paper presents a SCADA-specific cyber-security test-bed which contains SCADA software and communication infrastructure. This test-bed is used to investigate an Address Resolution Protocol (ARP) spoofing based man-in-the-middle attack. Finally, the paper proposes a future work plan which focuses on applying intrusion detection and prevention technology to address cyber-security issues in SCADA systems.
Resumo:
Several methods have been proposed to ‘clean’ the soft tissues of molluscs of mucus, so that the surface cilia can be examined microscopically. We report the first empirical test of the effectiveness of methods for removing mucus in the pallial cavity surface of chitons. Three methods were compared, at several time intervals: the enzyme hyaluronidase, the mucolytic agent N-acetyl cysteine (NAC), and seawater washing via the natural action of cilia in excised tissue. Treatment in NAC for 10 min produced the best results, and we recommend this protocol as a starting point for further investigation on mucus removal in a broader suite of taxa. We present the first description of the pallial surface cilia in the chiton Lepidochitona cinerea. During the course of this study, we also determined that these chitons were frequently infested with a ciliate protozoan parasite, Trichodina sp., which have been historically reported from chitons but never studied in detail. The parasites were absent where antimucus treatments were effective, but their abundance and large size (about 30-mm diameter) in less successful treatments obscured the view of the pallial cavity surface.
Resumo:
The aim of this paper is to investigate the mechanism of nanoscale fatigue using nano-impact and multiple-loading cycle nanoindentation tests, and compare it to previously reported findings of nanoscale fatigue using integrated stiffness and depth sensing approach. Two different film loading mechanism, loading history and indenter shapes are compared to comprehend the influence of test methodology on the nanoscale fatigue failure mechanisms of DLC film. An amorphous 100 nm thick DLC film was deposited on a 500 μm silicon substrate using sputtering of graphite target in pure argon atmosphere. Nano-impact and multiple-load cycle indentations were performed in the load range of 100 μN to 1000 μN and 0.1 mN to 100 mN, respectively. Both test types were conducted using conical and Berkovich indenters. Results indicate that for the case of conical indenter, the combination of nano-impact and multiple-loading cycle nanoindentation tests provide information on the life and failure mechanism of DLC film, which is comparable to the previously reported findings using the integrated stiffness and depth sensing approach. However, the comparison of results is sensitive to the applied load, loading mechanism, test-type and probe geometry. The loading mechanism and load history is therefore critical which also leads to two different definitions of film failure. The choice of exact test methodology, load and probe geometry should therefore be dictated by the in-service tribological conditions, and where necessary both test methodologies can be used to provide better insights of failure mechanism. Molecular dynamics (MD) simulations of the elastic response of nanoindentation is reported, which indicates that the elastic modulus of the film measured using MD simulation was higher than that experimentally measured. This difference is attributed to the factors related to the presence of material defects, crystal structure, residual stress, indenter geometry and loading/unloading rate differences between the MD and experimental results.