427 resultados para Orbiting astronomical observatories
Resumo:
In this paper we investigate gas-phase chemistry in the remnant 'superwind' of a carbon-rich red giant star, during its transition to a planetary nebula. The interacting stellar winds model is used. It is found that during the first few hundred years of transition, significant abundances of a few small molecules and ions (e.g. CH+, CH2+, CH3+, CH, CH2, NH) may occur in the thin, dense, shocked shell of gas predicted by thiS model, but that most molecules observed in protoplanetary nebulae will be rapidly destroyed, through photodissociation by strong UV from the central star. If dense clumps are present during transition, they may allow the gas-phase formation and/or survival of small amounts of some molecules, such as HCN, CN, C2H2, and HC3N, until about 2000 yr after termination of the superwind; and young, fully developed planetary nebulae may show observable amounts of polyatomic molecules by this means. Such clumping may explain the existence of, e.g., HCN in NGC 7027.
Resumo:
We have investigated the effects of depletion of the elements C, N and O on the chemical composition of dark clouds, using both isothermal and isochoric cloud models. Our work differs from previous approaches in that we have considered a much larger range of CNO depletions. We have included the chemistry of the ortho-and para-forms of H2 and the exothermic reaction between N+ and ortho-H2, which synthesizes NH3. In the isothermal models, the ortho:para ratio is very small at large depletions, but NH3 formation is still efficient owing to reactions between He+ and CN or HCN. In the isochoric models, the equilibrium temperature of the gas is larger, and a thermal ortho:para ratio, which is large enough to drive NH3 formation, results. In all cases, the fractional abundance of NH3 is close to 10(-8) and this may help to explain the puzzling observation that, in dark clouds, the column density of NH3 is always close to 10(15) cm-2.