197 resultados para Modulated Fields


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter presents a simple tracking phased locked loop (PLL) that can be used to track phase-modulated signals and provide a phase-conjugated signal for retrodirective retransmission. The configuration allows the retrodirective antenna to directly track phase-modulated signals with no requirement for a separate continuous wave (CW) pilot tone. The ability to directly track phase-modulated signals is carried out using a 4× multiplier on the tracking PLL reference signal. Practical phase conjugation results are presented for a five-element retrodirective array simultaneously sending and receiving phase-modulated (QPSK) signals. Signals with levels as low as -122 dBm can be phase-conjugated and retransmitted with 30 dBm EIRP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventionally, radial turbines have almost exclusively used radially fibred blades. While issues of mechanical integrity are paramount, there may be opportunities for improving turbine efficiency through a 3D blade design without exceeding mechanical limits. Off-design performance and understanding of the secondary flow structures now plays a vital role in the design decisions made for automotive turbocharger turbines. Of particular interest is extracting more energy at high pressure ratios and lower rotational speeds. Operating in this region means the rotor will experience high values of positive incidence at the inlet. A CFD analysis has been carried out on a scaled automotive turbine utilizing a swing vane stator system. To date no open literature exists on the flow structures present in a standard VGT system. Investigations were carried out on a 90 mm diameter rotor with the stator vane at the maximum, minimum and 25% mass flow rate positions. In addition stator vane endwall clearance existed at the hub side. From investigation of the internal flow fields of the baseline rotor, a number of areas that could be optimized in the future with three dimensional blading were identified. The blade loading and tip leakage flow near inlet play a significant role in the flow development further downstream at all stator vane positions. It was found that tip leakage flow and flow separation at off-design conditions could be reduced by employing back swept blading and redistributing the blade loading. This could potentially reduce the extent of the secondary flow structures found in the present study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducting atomic force microscopy images of bulk semiconducting BaTiO3 surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current- voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than that from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically demonstrate the possibility to generate both trains and isolated attosecond pulses with high ellipticity in a practical experimental setup. The scheme uses circularly polarized, counterrotating two-color driving pulses carried at the fundamental and its second harmonic. Using a model Ne atom, we numerically show that highly elliptic attosecond pulses are generated already at the single-atom level. Isolated pulses are produced by using few-cycle drivers with controlled time delay between them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Birefringence is one of the fascinating properties of the vacuum of quantum electrodynamics (QED) in strong electromagnetic fields. The scattering of linearly polarized incident probe photons into a perpendicularly polarized mode provides a distinct signature of the optical activity of the quantum vacuum and thus offers an excellent opportunity for a precision test of nonlinear QED. Precision tests require accurate predictions and thus a theoretical framework that is capable of taking the detailed experimental geometry into account. We derive analytical solutions for vacuum birefringence which include the spatio-temporal field structure of a strong optical pump laser field and an x-ray probe. We show that the angular distribution of the scattered photons depends strongly on the interaction geometry and find that scattering of the perpendicularly polarized scattered photons out of the cone of the incident probe x-ray beam is the key to making the phenomenon experimentally accessible with the current generation of FEL/high-field laser facilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sunspots on the surface of the Sun are the observational signatures of intense manifestations of tightly packed magnetic field lines, with near-vertical field strengths exceeding 6,000 G in extreme cases1. It is well accepted that both the plasma density and the magnitude of the magnetic field strength decrease rapidly away from the solar surface, making high-cadence coronal measurements through traditional Zeeman and Hanle effects difficult as the observational signatures are fraught with low-amplitude signals that can become swamped with instrumental noise2, 3. Magneto-hydrodynamic (MHD) techniques have previously been applied to coronal structures, with single and spatially isolated magnetic field strengths estimated as 9–55 G (refs 4,5,6,7). A drawback with previous MHD approaches is that they rely on particular wave modes alongside the detectability of harmonic overtones. Here we show, for the first time, how omnipresent magneto-acoustic waves, originating from within the underlying sunspot and propagating radially outwards, allow the spatial variation of the local coronal magnetic field to be mapped with high precision. We find coronal magnetic field strengths of 32 ± 5 G above the sunspot, which decrease rapidly to values of approximately 1 G over a lateral distance of 7,000 km, consistent with previous isolated and unresolved estimations. Our results demonstrate a new, powerful technique that harnesses the omnipresent nature of sunspot oscillations to provide magnetic field mapping capabilities close to a magnetic source in the solar corona.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper results are presented for a simple yet highly sensitive transceiver for phase modulated RFID applications. This is an advance on other simple RFID readers which can only operate with amplitude shift keyed (ASK) signals. Simple circuitry is achieved by the use of a novel injection locked PLL configuration which replaces the standard superhet type architecture normally used. The transceiver is shown to operate with a number of phase modulation modes which have certain advantages relating to distance to target. The paper concludes with practical results obtained for the transceiver when operated within a backscatter RFID application. A unique advantage of this transceiver is its complete immunity to the problem of TX/RX isolation, allowing for long ranges, estimated to be in the region of 80m at 1 GHz, to be achieved even in the presence of a simple backscatter target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 1019W cm-2) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10-20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8-10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the lack of a shear-rich tachocline region, low-mass fully convective (FC) stars are capable of generating strong magnetic fields, indicating that a dynamo mechanism fundamentally different from the solar dynamo is at work in these objects. We present a self-consistent three-dimensional model of magnetic field generation in low-mass FC stars. The model utilizes the anelastic magnetohydrodynamic equations to simulate compressible convection in a rotating sphere. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scale fields that carry most of the magnetic flux. The Zeeman–Doppler-Imaging technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass FC stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that for collisions of electrons with a high-intensity laser, discrete photon emissions introduce a transverse beam spread that is distinct from that due to classical (or beam shape) effects. Via numerical simulations, we show that this quantum induced transverse momentum gain of the electron is manifest in collisions with a realistic laser pulse of intensity within reach of current technology, and we propose it as a measurable signature of strong-field quantum electrodynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelet entropy assesses the degree of order or disorder in signals and presents this complex information in a simple metric. Relative wavelet entropy assesses the similarity between the spectral distributions of two signals, again in a simple metric. Wavelet entropy is therefore potentially a very attractive tool for waveform analysis. The ability of this method to track the effects of pharmacologic modulation of vascular function on Doppler blood velocity waveforms was assessed. Waveforms were captured from ophthalmic arteries of 10 healthy subjects at baseline, after the administration of glyceryl trinitrate (GTN) and after two doses of N(G)-nitro-L-arginine-methyl ester (L-NAME) to produce vasodilation and vasoconstriction, respectively. Wavelet entropy had a tendency to decrease from baseline in response to GTN, but significantly increased after the administration of L-NAME (mean: 1.60 ± 0.07 after 0.25 mg/kg and 1.72 ± 0.13 after 0.5 mg/kg vs. 1.50 ± 0.10 at baseline, p < 0.05). Relative wavelet entropy had a spectral distribution from increasing doses of L-NAME comparable to baseline, 0.07 ± 0.04 and 0.08 ± 0.03, respectively, whereas GTN had the most dissimilar spectral distribution compared with baseline (0.17 ± 0.08, p = 0.002). Wavelet entropy can detect subtle changes in Doppler blood velocity waveform structure in response to nitric-oxide-mediated changes in arteriolar smooth muscle tone.

Relevância:

20.00% 20.00%

Publicador: