201 resultados para Co-Fe-W alloys


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite element (FE) simulations provides an inexpensive alternative for material testingof new metal alloys. Carrying out experimental testing is expensive. Nanoindentation is particularly costly due to the equipment needed to work on such a scale. FE simulations provide an inexpensive means of material testing if accurately carried out. This paper will demonstrate the applicability and accuracy of using FE modelling for basic material tests and will propose that the viscoplastic model may be used for nanoindentation testing. The simulations will test the Young’s modulus of materials during analysis when an Abaqus VUMAT is used. The viscoplastic model is incorporated into a subroutine and is tested at the macroscopic scale against previous published results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SN 2012ec is a Type IIP supernova (SN) with a progenitor detection and comprehensive photospheric phase observational coverage. Here, we present Very Large Telescope and Public ESO Spectroscopic Survey of Transient Objects observations of this SN in the nebular phase. We model the nebular [O I] lambda lambda 6300, 6364 lines and find their strength to suggest a progenitor main-sequence mass of 13-15 M-circle dot. SN2012ec is unique among hydrogen-rich SNe in showing a distinct line of stable nickel [Ni II] lambda 7378. This line is produced by Ni-58, a nuclear burning ash whose abundance is a sensitive tracer of explosive burning conditions. Using spectral synthesis modelling, we use the relative strengths of [Ni II] lambda 7378 and [Fe II] lambda 7155 (the progenitor of which is Ni-56) to derive a Ni/Fe production ratio of 0.20 +/- 0.07 (by mass), which is a factor 3.4 +/- 1.2 times the solar value. High production of stable nickel is confirmed by a strong [Ni II] 1.939 mu m line. This is the third reported case of a core-collapse SN producing a Ni/Fe ratio far above the solar value, which has implications for core-collapse explosion theory and galactic chemical evolution models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electroless Ni–P (EN) and composite Ni–P–SiC (ENC) coatings were developed on cast aluminium alloy substrate, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni–P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni–Si phase was observed up to 500 °C of heat treatment. The microhardness is increased on incorporation of SiC in Ni–P matrix. The hardening mechanism is the formation of intermetallic phase Ni3P on annealing at elevated temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electroless Ni-P (EN) and composite Ni-P-SiC (ENC) coatings were developed on cast aluminium alloy, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni-P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni-Si phase was observed upto 500°C of heat treatment. The microhardness is increased on incorporation of SiC in Ni-P matrix. The hardening mechanism is the formation of intermetallic phase Ni3P on annealing at elevated temperature. Overall, the composite coating (ENC) was found to be superior as compared to particles free (EN) coating in both as-deposited and heat-treated conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present optical observations of the peculiar Type Ibn supernova (SN Ibn) OGLE-2012-SN-006, discovered and monitored by the Optical Gravitational Lensing Experiment-IV survey, and spectroscopically followed by Public ESO Spectroscopic Survey of Transient Objects (PESSTO) at late phases. Stringent pre-discovery limits constrain the explosion epoch with fair precision to JD = 245 6203.8 +/- 4.0. The rise time to the I-band light-curve maximum is about two weeks. The object reaches the peak absolute magnitude M-I = -19.65 +/- 0.19 on JD = 245 6218.1 +/- 1.8. After maximum, the light curve declines for about 25 d with a rate of 4 mag (100 d)(-1). The symmetric I-band peak resembles that of canonical Type Ib/c supernovae (SNe), whereas SNe Ibn usually exhibit asymmetric and narrower early-time light curves. Since 25 d past maximum, the light curve flattens with a decline rate slower than that of the Co-56-Fe-56 decay, although at very late phases it steepens to approach that rate. However, other observables suggest that the match with the Co-56 decay rate is a mere coincidence, and the radioactive decay is not the main mechanism powering the light curve of OGLE-2012-SN-006. An early-time spectrum is dominated by a blue continuum, with only a marginal evidence for the presence of He I lines marking this SN type. This spectrum shows broad absorptions bluewards than 5000 angstrom, likely O II lines, which are similar to spectral features observed in superluminous SNe at early epochs. The object has been spectroscopically monitored by PESSTO from 90 to 180 d after peak, and these spectra show the typical features observed in a number of SN 2006jc-like events, including a blue spectral energy distribution and prominent and narrow (v(FWHM) approximate to 1900 km s(-1)) He I emission lines. This suggests that the ejecta are interacting with He-rich circumstellar material. The detection of broad (10(4) km s(-1)) O I and Ca II features likely produced in the SN ejecta (including the [OI] lambda lambda 6300,6364 doublet in the latest spectra) lends support to the interpretation of OGLE-2012-SN-006 as a core-collapse event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium alloy exhibits an excellent combination of bio-compatibility, corrosion resistance, strength and toughness. The microstructure of an alloy influences the properties. The microstructures depend mainly on alloying elements, method of production, mechanical, and thermal treatments. The relationships between these variables and final properties of the alloy are complex, non-linear in nature, which is the biggest hurdle in developing proper correlations between them by conventional methods. So, we developed artificial neural networks (ANN) models for solving these complex phenomena in titanium alloys.

In the present work, ANN models were used for the analysis and prediction of the correlation between the process parameters, the alloying elements, microstructural features, beta transus temperature and mechanical properties in titanium alloys. Sensitivity analysis of trained neural network models were studied which resulted a better understanding of relationships between inputs and outputs. The model predictions and the analysis are well in agreement with the experimental results. The simulation results show that the average output-prediction error by models are less than 5% of the prediction range in more than 95% of the cases, which is quite acceptable for all metallurgical purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper employs a unique decentralised cooperative control method to realise a formation-based collision avoidance strategy for a group of autonomous vehicles. In this approach, the vehicles' role in the formation and their alert and danger areas are first defined, and the formation-based intra-group and external collision avoidance methods are then proposed to translate the collision avoidance problem into the formation stability problem. The extension–decomposition–aggregation formation control method is next employed to stabilise the original and modified formations, whilst manoeuvring, and subsequently solve their collision avoidance problem indirectly. Simulation study verifies the feasibility and effectiveness of the intra-group and external collision avoidance strategy. It is demonstrated that both formation control and collision avoidance problems can be simultaneously solved if the stability of the expanded formation including external obstacles can be satisfied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to directly utilize hydrocarbons and other renewable liquid fuels is one of the most important issues affecting the large scale deployment of solid oxide fuel cells (SOFCs). Herein we designed La0.2Sr0.7TiO3-Ni/YSZ functional gradient anode (FGA) supported SOFCs, prepared with a co-tape casting method and sintered using the field assisted sintering technique (FAST). Through SEM observations, it was confirmed that the FGA structure was achieved and well maintained after the FAST process. Distortion and delamination which usually results after conventional sintering was successfully avoided. The La0.2Sr0.7TiO3-Ni/YSZ FGA supported SOFCs showed a maximum power density of 600mWcm-2 at 750°C, and was stable for 70h in CH4. No carbon deposition was detected using Raman spectroscopy. These results confirm the potential coke resistance of La0.2Sr0.7TiO3-Ni/YSZ FGA supported SOFCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a novel strategy for in situ fabrication of hierarchical Fe3O4 nanoclusters-GAs. Fe3O4 NCs-GAs deliver excellent rate capability (the reversible capacities obtained were 1442, 392 and 118 mA h g-1 at 0.1C, 12C and 35C rates), and a high reversible capacity of 577 mA h g-1 over 300 cycles at the current density of 5.2 A g-1 (6C).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-dimensional (3D) graphene-Co3O4 electrode was prepared by a two-step method in which graphene was initially deposited on a Ni foam with Co3O4 then grown on the resulting graphene structure. Cross-linked Co3O4 nanosheets with an open pore structure were fully and vertically distributed throughout the graphene skeleton. The free-standing and binder-free monolithic electrode was used directly as a cathode in a Li-O2 battery. This composite structure exhibited enhanced performance with a specific capacity of 2453 mA h g-1 at 0.1 mA cm-2 and 62 stable cycles with 583 mA h g-1 (1000 mA h gcarbon-1). The excellent electrochemical performance is associated with the unique architecture and superior catalytic activity of the 3D electrode. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, niobium doping is evaluated as a means of enhancing the electrochemical performance of a Sr2Fe1.5Mo0.5O6-δ (SFM) perovskite structure cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) applications. As the radius of Nb approximates that of Mo and exhibits +4/+5 mixed valences, its substitution is expected to improve material performance. A series of Sr2Fe1.5Mo0.5-xNbxO6-δ (x = 0.05, 0.10, 0.15, 0.20) cathode materials are prepared and the phase structure, chemical compatibility, microstructure, electrical conductivity, polarization resistance and power generation are systematically characterized. Among the series of samples, Sr2Fe1.5Mo0.4Nb0.10O6-δ (SFMNb0.10) exhibits the highest conductivity value of 30 S cm-1 at 550°C, and the lowest area specific resistance of 0.068 Ω cm2 at 800°C. Furthermore, an anode-supported single cell incorporating a SFMNb0.10 cathode presents a maximum power density of 1102 mW cm-2 at 800°C. Furthermore no obvious performance degradation is observed over 15 h at 750°C with wet H2(3% H2O) as fuel and ambient air as the oxidant. These results demonstrate that SFMNb shows great promise as a novel cathode material for IT-SOFCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ni-substituted Sr2Fe1.5-xNixMo0.5O6-δ (SFNM) materials have been investigated as anode catalysts for intermediate temperature solid oxide fuel cells. Reduced samples (x = 0.05 and 0.1) maintained the initial perovskite structure after reduction in H2, while metallic nickel particles were detected on the grain surface for x = 0.2 and 0.3 using transmission electron microscopy. Temperature programmed reduction results indicate that the stable temperature for SFNM samples under reduction conditions decreases with Ni content. In addition, X-ray photoelectron spectroscopy analysis suggests that the incorporation of Ni affects the conductivity of SFNM through changing the ratios of Fe3+/Fe2+ and Mo6+/Mo5+. Sr2Fe1.4Ni0.1Mo0.5O6-δ shows the highest electrical conductivity of 20.6 S cm-1 at 800 °C in H2. The performance of this anode was further tested with electrolyte-supported cells, giving 380 mW cm-2 at 750 °C in H2, hence demonstrating that Ni doping in the B-site is beneficial for Sr2Fe1.5Mo0.5O6-δ anode performance. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of Mn-Fe nodules in the epipedons (surface horizons) of paleosols of presumed Upper Neogene age in the northwestern Venezuelan Andes have been interpreted as products of inorganic oxidation and reduction processes operating over the full range of glacial and interglacial cycles that affected paleosol morphogenesis. New microscopic/chemical data from combined SEM-EDS-FIB analyses of representative Mn-Fe nodules indicate microbes play an important role in Mn/Fe precipitation leading to their genesis in alpine Mollisols (Argiustolls). Although the prevailing new data are based mainly on fossil forms of filamentous bacteria and fungi and other biogenic pseudomorphs that may represent the former resident bacteria, the presence of extant microbes must await field experiments/collection, followed by a molecular microbiology approach to determine the biological drivers of metal precipitation. As in other terrestrial niche environments, microbes are seen here to play a role, perhaps a key one, in the morphogenesis of paleosols of importance in upper Neogene paleoenvironmental reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Changes to health care systems andworking hours have fragmentedresidents’ clinical experiences withpotentially negative effects ontheir development as professionals.Investigation of off-site supervision,which has been implemented in isolatedrural practice, could reveal importantbut less overt components of residencyeducation. 

Method: Insights from sociocultural learningtheory and work-based learning provideda theoretical framework. In 2011–2012,16 family physicians in Australia andCanada were asked in-depth how theyremotely supervised residents’ workand learning, and for their reflectionson this experience. The verbatiminterview transcripts and researchers’memos formed the data set. Templateanalysis produced a description andinterpretation of remote supervision. 

Results: Thirteen Australian family physiciansfrom five states and one territory, andthree Canadians from one province,participated. The main themes werehow remoteness changed the dynamicsof care and supervision; the importanceof ongoing, holistic, nonhierarchical,supportive supervisory relationships; andthat residents learned “clinical courage”through responsibility for patients’ careover time. Distance required supervisorsto articulate and pass on their expertiseto residents but made monitoringdifficult. Supervisory continuityencouraged residents to build on pastexperiences and confront deficiencies. 

Conclusions: Remote supervision enabled residents todevelop as clinicians and professionals.This questions the supremacy of co-locationas an organizing principle forresidency education. Future specialists maybenefit from programs that give themongoing and increasing responsibilityfor a group of patients and supportive.