263 resultados para Cellini, Benvenuto, 1500-1571.
Resumo:
An extension of the Ye and Shreeve group contribution method [C. Ye, J.M. Shreeve, J. Phys. Chem. A 111 (2007) 1456–1461] for the estimation of densities of ionic liquids (ILs) is here proposed. The new version here presented allows the estimation of densities of ionic liquids in wide ranges of temperature and pressure using the previously proposed parameter table. Coefficients of new density correlation proposed were estimated using experimental densities of nine imidazolium-based ionic liquids. The new density correlation was tested against experimental densities available in literature for ionic liquids based on imidazolium, pyridinium, pyrrolidinium and phosphonium cations. Predicted densities are in good agreement with experimental literature data in a wide range of temperatures (273.15–393.15 K) and pressures (0.10–100 MPa). For imidazolium-based ILs, the mean percent deviation (MPD) is 0.45% and 1.49% for phosphonium-based ILs. A low MPD ranging from 0.41% to 1.57% was also observed for pyridinium and pyrrolidinium-based ILs.
Resumo:
Ionic liquids (ILs) have attracted large amount of interest due to their unique properties. Although large effort has been focused on the investigation of their potential application, characterization of ILs properties and structure–property relationships of ILs are poorly understood. Computer aided molecular design (CAMD) of ionic liquids (ILs) can only be carried if predictive computational methods for the ILs properties are available. The limited availability of experimental data and their quality have been preventing the development of such tools. Based on experimental surface tension data collected from the literature and measured at our laboratory, it is here shown how a quantitative structure–property relationship (QSPR) correlation for parachors can be used along with an estimation method for the densities to predict the surface tensions of ILs. It is shown that a good agreement with literature data is obtained. For circa 40 ionic liquids studied a mean percent deviation (MPD) of 5.75% with a maximum deviation inferior to 16% was observed. A correlation of the surface tensions with the molecular volumes of the ILs was developed for estimation of the surface tensions at room temperature. It is shown that it can describe the experimental data available within a 4.5% deviation. The correlations here developed can thus be used to evaluate the surface tension of ILs for use in process design or in the CAMD of new ionic liquids.
Resumo:
Based on experimental viscosity data collected from the literature and using density data obtained from a predictive method previously proposed by the authors, a group contribution method is proposed to estimate viscosity of imidazolium-, pyridinium-, and pyrrolidinium-based ILs containing hexafluorophosphate (PF6), tetrafluoroborate (BF4), bis(trifluoromethanesulfonyl) amide (Tf2N), chloride (Cl), acetate (CH3COO), methyl sulfate (MeSO4), ethyl sulfate (EtSO4), and trifluoromethanesulfonate (CF3SO3) anions, covering wide ranges of temperature, 293–393 K and viscosity, 4–21,000 cP. It is shown that a good agreement with literature data is obtained. For circa 500 data points of 29 ILs studied, a mean percent deviation (MPD) of 7.7% with a maximum deviation smaller than 28% was observed. 71.1% of the estimated viscosities present deviations smaller than 10% of the experimental values while only 6.4% have deviations larger than 20%. The group contribution method here developed can thus be used to evaluate the viscosity of new ionic liquids in wide ranges of temperatures at atmospheric pressure and, as data for new groups of cations and anions became available, can be extended to a larger range of ionic liquids.
Resumo:
The limited availability of experimental data and their quality have been preventing the development of predictive methods and Computer Aided Molecular Design (CAMD) of ionic liquids (ILs). Based on experimental speed of sound data collected from the literature, the inter-relationship of surface tension (s), density (?), and speed of sound (u) has been examined for imidazolium based ILs containing hexafluorophosphate (PF6), tetrafluoroborate (BF4), bis(trifluoromethanesulphonyl) amide (NTf2), methyl sulphate (MeSO4), ethyl sulphate (EtSO4), and trifluoromethanesulphonate (CF3SO3) anions, covering wide ranges of temperature, 278.15–343.15 K and speed of sound, 1129.0–1851.0 m s-1. The speed of sound was correlated with a modified Auerbach's relation, by using surface tension and density data obtained from volume based predictive methods previously proposed by the authors. It is shown that a good agreement with literature data is obtained. For 133 data points of 14 ILs studied a mean percent deviation (MPD) of 1.96% with a maximum deviation inferior to 5% was observed. The correlations developed here can thus be used to evaluate the speeds of sound of new ionic liquids.
Resumo:
There is a great need to design functional bioactive substitute materials capable of surviving harsh and diverse conditions within the human body. Calcium-phosphate ceramics, in particular hydroxyapatite are well established substitute materials for orthopaedic and dental applications. The aim of this study was to develop a bioceramic from alga origins suitable for bone tissue application. This was achieved by a novel synthesis technique using ambient pressure at a low temperature of 100 degrees C in a highly alkaline environment. The algae was characterised using SEM, BET, XRD and Raman Spectroscopy to determine its physiochemical properties at each stage. The results confirmed the successful conversion of mineralised red alga to hydroxyapatite, by way of this low-pressure hydrothermal process. Furthermore, the synthesised hydroxyapatite maintained the unique micro-porous structure of the original algae, which is considered beneficial in bone repair applications. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A stencilling technique for depositing arrays of nanoscale ferroelectric capacitors on a surface could be useful in data storage devices.
Resumo:
Mycobacterium avium ssp. paratuberculosis (MAP) causes Johne's disease in cattle and other ruminants and has been implicated as a possible cause of Crohn's disease in humans. The organism gains access to raw milk directly through excretion into the milk within the udder and indirectly through faecal contamination during milking. MAP has been shown to survive commercial pasteurization in naturally infected milk, even at the extended holding time of 25 s. Pasteurized milk must therefore be considered a vehicle of transmission of MAP to humans. isolation methods for MAP from milk are problematical, chiefly because of the absence of a suitable selective medium. This makes food surveillance programs and research on this topic difficult. The MAP problem can be addressed in two main ways: by devising a milk-processing strategy that ensures the death of the organism: and/or strategies at farm level to prevent access of the organism into raw milk. Much of the research to date has been devoted to determining ifa problem exists and, if so, the extent of the problem. Little has been directed at possible solutions. Given the current state of information on this topic and the potential consequences for the dairy industry research is urgently needed so that a better understanding of the risks and the efficacy of possible processing solutions can be determined.
Resumo:
Aims: Burkholderia cepacia complex (Bcc) isolates causing pulmonary infection in cystic fibrosis (CF) patients grow within an acidic environment in the lung. As exposure to acid pH has been shown to increase intracellular inorganic polyphosphate (polyP) formation in some bacteria, we investigated the inter-relationship between acidic pH and polyP accumulation in Bcc isolates.
Resumo:
It is known that the method used to mix the liquid monomer and powder of PMMA bone cement influences the quality of the cement that is used in total joint replacements. Mixing theory indicates that the interaction between the liquid monomer and the powder is affected by a number of parameters, such as cement viscosity and degree of agitation, with this knowledge utilized in the design of cement mixing devices. Therefore, the objectives of this study were to: (i) obtain information on the interaction of the liquid monomer and the powder in the case of an PMMA bone cement, (ii) show how this knowledge can be applied to the design of an automated cement mixing device, and (iii) compare the porosity, bending modulus, and bending strength of one commercially-available cement prepared using the automated mixer and prepared using a conventional mixer that is in current clinical use. Experimental data indicated that increasing the velocity and decreasing the viscosity of the systems produced cement that improved mechanical properties, which may contribute to better mechanical integrity and, hence, reduced tendency for aseptic loosening, of cemented hip implants.