283 resultados para Ca2 Release
Resumo:
Novel drug delivery systems (DDS) to improve the pharmacokinetic profile of hydrophobic drugs following oral administration are an area of keen interest in drug research. An ideal DDS should not adversely affect drug activity, be capable of delivering a therapeutic dose of drug, and allow homogenous drug loading and drug release. Mesoporous silica has been proposed for this application, with ibuprofen employed as the model drug. It was hypothesised that mesoporous silica MCM-41 is capable of delivering a pharmacologically therapeutic dose of ibuprofen. Ibuprofen-loaded MCM-41 can be prepared reproducibly at a drug to carrier ratio of 30% (wt/wt). The release profile was seen to be 90% within 2 h. Initial assessment of COX-1 inhibitory activity suggests the absence of adverse effects attributable to drug-carrier interaction. The results of this study provide further evidence in support of the proposed use of mesoporous silica in drug delivery.
Resumo:
Published work has shown that endothelin-l-induced contractility of bovine retinal pericytes is reduced after culture in high concentrations of glucose. The purpose of the present study was to establish the profile of endothelin-l-induced calcium transients in pericytes and to identify changes occurring after culture in high concentrations of glucose. Glucose had no effect on basal levels of cytosolic calcium or on endothelin-l-induced calcium release from intracellular stores. However, influx of calcium from the extracellular medium after endothelin-l stimulation was reduced in pericytes that had been cultured in 25 mM D-glucose. L-type Ca2+ currents were identified by patch clamping. The L-type Ca2+ channel agonist, (-)-Bay K8644, caused less influx of calcium from the extracellular medium in pericytes that had been cultured in 25 mM D-glucose than in those cultured with 5 mM D-glucose. However, 3-O-methylglucose, a nonmetabolizable analogue of glucose which can cause glycation, had similar effects to those of high concentrations of glucose. The results suggest that reduced function of the L-type Ca2+ channel that occurs in bovine retinal pericytes after culture in high concentrations of D-glucose is probably due to glycation of a channel protein.
Resumo:
Background: There is considerable interest in developing new multipurpose prevention technologies to address women's reproductive health needs. This study describes an innovative barrier contraceptive device--based on the SILCS diaphragm--that also provides long-term controlled release of the lead candidate anti-HIV microbicide dapivirine.<br/><br/>Study design: Diaphragm devices comprising various dapivirine-loaded polymer spring cores overmolded with a nonmedicated silicone elastomer sheath were fabricated by injection molding processes. In vitro release testing, thermal analysis and mechanical characterization were performed on the devices.<br/><br/>Results: A diaphragm device containing a polyoxymethylene spring core loaded with 10% w/w dapivirine provided continuous and controlled release of dapivirine over a 6-month period, with a mean in vitro daily release rate of 174 mcg/day. The mechanical properties of the new diaphragm were closely matched to the SILCS diaphragm.<br/><br/>Conclusions: The study demonstrates proof of concept for a dapivirine-releasing diaphragm with daily release quantities potentially capable of preventing HIV transmission. In discontinuous clinical use, release of dapivirine may be readily extended over 1 or more years. © 2013 Elsevier Inc. All rights reserved.