252 resultados para Brussels IIa Regulation
Resumo:
Acute promyelocytic leukemia (APL) is associated with a reciprocal and balanced translocation involving the retinoic acid receptor-alpha (RARalpha). All-trans retinoic acid (ATRA) is used to treat APL and is a potent morphogen that regulates HOX gene expression in embryogenesis and organogenesis. HOX genes are also involved in hematopoiesis and leukemogenesis. Thirty-nine mammalian HOX genes have been identified and classified into 13 paralogous groups clustered on 4 chromosomes. They encode a complex network of transcription regulatory proteins whose precise targets remain poorly understood. The overall function of the network appears to be dictated by gene dosage. To investigate the mechanisms involved in HOX gene regulation in hematopoiesis and leukemogenesis by precise measurement of individual HOX genes, a small-array real-time HOX (SMART-HOX) quantitative polymerase chain reaction (PCR) platform was designed and validated. Application of SMART-HOX to 16 APL bone marrow samples revealed a global down-regulation of 26 HOX genes compared with normal controls. HOX gene expression was also altered during differentiation induced by ATRA in the PML-RARalpha(+) NB4 cell line. PML-RARalpha fusion proteins have been reported to act as part of a repressor complex during myeloid cell differentiation, and a model linking HOX gene expression to this PML-RARalpha repressor complex is now proposed.
Resumo:
Mitochondrial transcription termination factor 1, MTERF1, has been reported to couple rRNA gene transcription initiation with termination and is therefore thought to be a key regulator of mammalian mitochondrial ribosome biogenesis. The prevailing model is based on a series of observations published over the last two decades, but no in vivo evidence exists to show that MTERF1 regulates transcription of the heavy-strand region of mtDNA containing the rRNA genes. Here, we demonstrate that knockout of Mterf1 in mice has no effect on mitochondrial rRNA levels or mitochondrial translation. Instead, loss of Mterf1 influences transcription initiation at the light-strand promoter, resulting in a decrease of de novo transcription manifested as reduced 7S RNA levels. Based on these observations, we suggest that MTERF1 does not regulate heavy-strand transcription, but rather acts to block transcription on the opposite strand of mtDNA to prevent transcription interference at the light-strand promoter.
Resumo:
Pollen tube growth is dependent on a dynamic actin cytoskeleton, suggesting that actin-regulating proteins are involved. We have examined the regulation of the lily pollen-specific actin-depolymerizing factor (ADF) LIADF1. Its actin binding and depolymerizing activity is pH sensitive, inhibited by certain phosphoinositides, but not controlled by phosphorylation. Compared with its F-actin binding properties, its low activity in depolymerization assays has been used to explain why pollen ADF decorates F-actin in pollen grains. This low activity is incompatible with a role in increasing actin dynamics necessary to promote pollen tube growth. We have identified a plant homolog of actin-interacting protein, AIP1, which enhances the depolymerization of F-actin in the presence of LIADF1 by similar to60%. Both pollen ADF and pollen AIP1 bind F-actin in pollen grains but are mainly cytoplasmic in pollen tubes. Our results suggest that together these proteins remodel actin filaments as pollen grains enter and exit dormancy.
Resumo:
The aim of this study was to characterize the transcriptome of a balanced polymorphism, under the regulation of a single gene, for phosphate fertilizer responsiveness/arsenate toler- ance in wild grass Holcus lanatus genotypes screened from the same habitat.
De novo transcriptome sequencing, RNAseq (RNA sequencing) and single nucleotide poly- morphism (SNP) calling were conducted on RNA extracted from H.lanatus. Roche 454 sequencing data were assembled into c. 22 000 isotigs, and paired-end Illumina reads for phosphorus-starved (P) and phosphorus-treated (P+) genovars of tolerant (T) and nontoler- ant (N) phenotypes were mapped to this reference transcriptome.
Heatmaps of the gene expression data showed strong clustering of each P+/P treated genovar, as well as clustering by N/T phenotype. Statistical analysis identified 87 isotigs to be significantly differentially expressed between N and T phenotypes and 258 between P+ and P treated plants. SNPs and transcript expression that systematically differed between N and T phenotypes had regulatory function, namely proteases, kinases and ribonuclear RNA- binding protein and transposable elements.
A single gene for arsenate tolerance led to distinct phenotype transcriptomes and SNP pro- files, with large differences in upstream post-translational and post-transcriptional regulatory genes rather than in genes directly involved in P nutrition transport and metabolism per se.
Resumo:
The Arabidopsis thaliana CORONATINE INSENSITIVE1 (COI1) gene encodes an F-box protein to assemble SCF(COI1) complexes essential for response to jasmonates (JAs), which are a family of plant signaling molecules required for many essential functions, including plant defense and reproduction. To better understand the molecular basis of JA action, we screened for suppressors of coi1 and isolated a coi1 suppressor1 (cos1) mutant. The cos1 mutation restores the coi1-related phenotypes, including defects in JA sensitivity, senescence, and plant defense responses. The COS1 gene was cloned through a map-based approach and found to encode lumazine synthase, a key component in the riboflavin pathway that is essential for diverse yet critical cellular processes. We demonstrated a novel function for the riboflavin pathway that acts downstream of COI1 in the JA signaling pathway and is required for suppression of the COI1-mediated root growth, senescence, and plant defense.
Today's softness in tomorrow's nightmare:intensifying the fight against cartels in Brussels and Bonn
Resumo:
Failure to efficiently induce apoptosis contributes to cisplatin resistance in non-small-cell lung cancer (NSCLC). Although BCL-2-associated X protein (BAX) and BCL-2 antagonist killer (BAK) are critical regulators of the mitochondrial apoptosis pathway, their requirement has not been robustly established in relation to cisplatin. Here, we show that cisplatin can efficiently bypass mitochondrial apoptosis block caused by loss of BAX and BAK, via activation of the extrinsic death receptor pathway in some model cell lines. Apoptosis resistance following cisplatin can only be observed when both extrinsic and intrinsic pathways are blocked, consistent with redundancy between mitochondrial and death receptor pathways in cisplatin-induced apoptosis. In H460 NSCLC cells, caspase-8 cleavage was shown to be induced by cisplatin and is dependent on death receptor 4, death receptor 5, Fas-associated protein with death domain, acid sphingomyelinase and ceramide synthesis. In contrast, cisplatin-resistant cells fail to activate caspase-8 via this pathway despite conserving sensitivity to death ligand-driven activation. Accordingly, caspase-8 activation block acquired during cisplatin resistance, can be bypassed by death receptor agonism. © 2012 Macmillan Publishers Limited