228 resultados para Bolam Test
Resumo:
As part of a UK-China science bridge project - a UK government funded initiative linking leading universities and businesses in selective partnering countries in 2009 a collaborative research programme was initiated between Queen's University and the Research Institute of High Performance Concrete (part of the Central Research Institute of Building and Construction) in Beijing.
For further details email b.magee@ulster.ac.uk
Resumo:
Objectives. To conduct a prospective evaluation to determine the utility of the BTA stat test in the detection of upper tract transitional cell carcinoma (UTTCC). Monitoring for UTTCC currently relies on invasive procedures such as upper tract imaging, ureteral washing cytology (UWC) and/or ureteroscopy, or voided urine cytology (VUC). The BTA stat test is a sensitive qualitative immunoassay that detects human complement factor H-related protein in voided urine.
Methods. A total of 81 patients participated, 27 with histopathologically confirmed UTTCC, 26 with upper tract calculi, and 28 with microscopic hematuria but no evidence of urologic disease. Voided specimens collected before surgery or treatment were tested with the BTA stat test and VUC. UWC was performed in specimens collected by a ureteral catheter.
Results. The BTA stat test was significantly more sensitive and specific than VUC or UWC. The overall sensitivity for each was 82%, 11%, and 48%; the specificity was 89%, 54%, and 33%. The positive predictive value for the BTA stat test was 79% and the negative predictive value was 91%, both the highest of the three tests.
Conclusions. The BTA stat test was superior to VUC and UWC in the detection of UTTCC. These results may support the adoption of a less aggressive follow-up policy when monitoring for UTTCC when the BTA stat result is negative. If cystoscopy is negative and the BTA stat test is positive, upper tract investigations should be expedited and, if the bladder is in place, bladder biopsies performed. (C) 2001, Elsevier Science Inc.
Resumo:
A PSS/E 32 model of a real section of the Northern Ireland electrical grid was dynamically controlled with Python 2.5. In this manner data from a proposed wide area monitoring system was simulated. The area is of interest as it is a weakly coupled distribution grid with significant distributed generation. The data was used to create an optimization and protection metric that reflected reactive power flow, voltage profile, thermal overload and voltage excursions. Step changes in the metric were introduced upon the operation of special protection systems and voltage excursions. A wide variety of grid conditions were simulated while tap changer positions and switched capacitor banks were iterated through; with the most desirable state returning the lowest optimization and protection metric. The optimized metric was compared against the metric generated from the standard system state returned by PSS/E. Various grid scenarios were explored involving an intact network and compromised networks (line loss) under summer maximum, summer minimum and winter maximum conditions. In each instance the output from the installed distributed generation is varied between 0 MW and 80 MW (120% of installed capacity). It is shown that in grid models the triggering of special protection systems is delayed by between 1 MW and 6 MW (1.5% to 9% of capacity), with 3.5 MW being the average. The optimization and protection metric gives a quantitative value for system health and demonstrates the potential efficacy of wide area monitoring for protection and control.
Resumo:
The test of modifications to quantum mechanics aimed at identifying the fundamental reasons behind the unobservability of quantum mechanical superpositions at the macroscale is a crucial goal of modern quantum mechanics. Within the context of collapse models, current proposals based on interferometric techniques for their falsification are far from the experimental state of the art. Here we discuss an alternative approach to the testing of quantum collapse models that, by bypassing the need for the preparation of quantum superposition states might help us addressing nonlinear stochastic mechanisms such as the one at the basis of the continuous spontaneous localization model.
Resumo:
Background: Diagnosis of meningococcal disease relies on recognition of clinical signs and symptoms that are notoriously non-specific, variable, and often absent in the early stages of the disease. Loop-mediated isothermal amplification (LAMP) has previously been shown to be fast and effective for the molecular detection of meningococcal DNA in clinical specimens. We aimed to assess the diagnostic accuracy of meningococcal LAMP as a near-patient test in the emergency department.
Methods: For this observational cohort study of diagnostic accuracy, children aged 0-13 years presenting to the emergency department of the Royal Belfast Hospital for Sick Children (Belfast, UK) with suspected meningococcal disease were eligible for inclusion. Patients underwent a standard meningococcal pack of investigations testing for meningococcal disease. Respiratory (nasopharyngeal swab) and blood specimens were collected from patients and tested with near-patient meningococcal LAMP and the results were compared with those obtained by reference laboratory tests (culture and PCR of blood and cerebrospinal fluid).
Findings: Between Nov 1, 2009, and Jan 31, 2012, 161 eligible children presenting at the hospital underwent the meningococcal pack of investigations and were tested for meningococcal disease, of whom 148 consented and were enrolled in the study. Combined testing of respiratory and blood specimens with use of LAMP was accurate (sensitivity 89% [95% CI 72-96], specificity 100% [97-100], positive predictive value 100% [85-100]; negative predictive value 98% [93-99]) and diagnostically useful (positive likelihood ratio 213 [95% CI 13-infinity] and negative likelihood ratio 0·11 [0·04-0·32]). The median time required for near-patient testing from sample to result was 1 h 26 min (IQR 1 h 20 min-1 h 32 min).
Interpretation: Meningococcal LAMP is straightforward enough for use in any hospital with basic laboratory facilities, and near-patient testing with this method is both feasible and effective. By contrast with existing UK National Institute of Health and Care Excellence guidelines, we showed that molecular testing of non-invasive respiratory specimens from children is diagnostically accurate and clinically useful.
Resumo:
Implementation of both design for durability and performance-based standards and specifications are limited by the lack of rapid, simple, science based test methods for characterising the transport properties and deterioration resistance of concrete. This paper presents developments in the application of electrical property measurements as a testing methodology to evaluate the relative performance of a range of concrete mixes. The technique lends itself to in-situ monitoring thereby allowing measurements to be obtained on the as-placed concrete. Conductivity measurements are presented for concretes with and without supplementary cementitious materials (SCM’s) from demoulding up to 350 days. It is shown that electrical conductivity measurements display a continual decrease over the entire test period and attributed to pore structure refinement due to hydration and pozzolanic reaction. The term formation factor is introduced to rank concrete performance in terms of is resistance to chloride penetration.
Resumo:
Durability of concrete structures is primarily dependent on the environmental influences, i.e. the penetration of aggressive substances in the structural element from the environment. Penetrability is an important durability indicator of concrete and by specifying different classes of penetrability of concrete it should be possible to design a structure with the required resistance to environmental loads. This chapter covers descriptions of the available and commonly applied in situ and laboratory, non-invasive and semi-invasive test methods for evaluating concrete penetrability properties.
Resumo:
Currently there is no reliable objective method to quantify the setting properties of acrylic bone cements within an operating theatre environment. Ultrasonic technology can be used to determine the acoustic properties of the polymerising bone cement, which are linked to material properties and provide indications of the physical and chemical changes occurring within the cement. The focus of this study was the critical evaluation of pulse-echo ultrasonic test method in determining the setting and mechanical properties of three different acrylic bone cement when prepared under atmospheric and vacuum mixing conditions. Results indicated that the ultrasonic pulse-echo technique provided a highly reproducible and accurate method of monitoring the polymerisation reaction and indicating the principal setting parameters when compared to ISO 5833 standard, irrespective of the acrylic bone cement or mixing method used. However, applying the same test method to predict the final mechanical properties of acrylic bone cement did not prove a wholly accurate approach. Inhomogeneities within the cement microstructure and specimen geometry were found to have a significant influence on mechanical property predictions. Consideration of all the results suggests that the non-invasive and non-destructive pulse-echo ultrasonic test method is an effective and reliable method for following the full polymerisation reaction of acrylic bone cement in real-time and then determining the setting properties within a surgical theatre environment. However the application of similar technology for predicting the final mechanical properties of acrylic bone cement on a consistent basis may prove difficult.
How subtle are the biases that shape the fidelity of the fossil record? A test using marine molluscs
Resumo:
Biases in preservation shape the fossil record, and therefore impact on our reconstructions of past environments and biodiversity. Given the intensive recent research in the general fields of taphonomy and exceptional preservation, surprisingly, fundamental questions remain unanswered about species-level variation in skeletal preservation potential at low taxonomic levels (e.g. between genera from the same family, or between taxa from related families) across myriad groups with multi-element skeletons. Polyplacophoran molluscs (chitons sensu lato) are known from the late Cambrian to Recent, and possess a distinctive articulated scleritome consisting of eight overlapping calcareous valves. The apparent uniformity of living chitons presents an ideal model to test the potential for taphonomic biases at the alpha-taxon level. The vast majority of fossil chitons are preserved as single valves; few exhibit body preservation or even an articulated shell series. An experimental taphonomic programme was conducted using the Recent polyplacophorans Lepidochitona cinerea and Tonicella marmorea (suborder Chitonina) and Acanthochitona crinita (Acanthochitonina). Experiments in a rock tumbler on disarticulated valves found differential resistance to abrasion between taxa; in one experiment 53.8-61.5% of Lepidochitona valves were recovered but 92% of those from Tonicella and 100% of elements from Acanthochitona. Chiton valves and even partly decayed carcasses are more resistant to transportation than their limited fossil record implies. Different species of living chitons have distinctly different preservation potential. This, problematically, does not correlate with obvious differences in gross valve morphology; some, but not all, of the differences correlate with phylogeny. Decay alone is sufficient to exacerbate differences in preservation potential of multi-element skeletons; some, but not all, of the variation that results is due to specimen size and the fidelity of the fossil record will thus vary intra-specifically (e.g. between ontogenetic stages) as well as inter-specifically.
Resumo:
1. We tested the species diversity-energy hypothesis using the British bird fauna. This predicts that temperature patterns should match diversity patterns. We also tested the hypothesis that the mechanism operates directly through effects of temperature on thermoregulatory loads; this further predicts that seasonal changes in temperature cause matching changes in patterns of diversity, and that species' body mass is influential.
2. We defined four assemblages using migration status (residents or visitors) and season (summer or winter distribution). Records of species' presence/absence in a total of 2362, 10 x 10-km, quadrats covering most of Britain were used, together with a wide selection of habitat, topographic and seasonal climatic data.
3. We fitted a logistic regression model to each species' distribution using the environmental data. We then combined these individual species models mathematically to form a diversity model. Analysis of this composite model revealed that summer temperature was the factor most strongly associated with diversity.
4. Although the species-energy hypothesis was supported, the direct mechanism, predicting an important role for body mass and matching seasonal patterns of change between diversity and temperature, was not supported.
5. However, summer temperature is the best overall explanation for bird diversity patterns in Britain. It is a better predictor of winter diversity than winter temperature. Winter diversity is predicted more precisely from environmental factors than summer diversity.
6. Climate change is likely to influence the diversity of different areas to different extents; for resident species, low diversity areas may respond more strongly as climate change progresses. For winter visitors, higher diversity areas may respond more strongly, while summer visitors are approximately neutral.
Resumo:
Queen's University Belfast and Wave Barrier Ltd have developed a tidal testing platform to test hydrokinetic turbines at medium scale. Multiple turbines can be pushed through still water conditions, in steady-state pushing tests. Experiments were conducted to evaluate the interactions between two identical, mono-strut, horizontal axis tidal turbines (HATTs) of 1.5 m diameter (D) rotor. Their relative performance when located individually, in-plane and in-line are investigated. The data shows a high consistency in the power curves at different flow speeds, which indicates high repeatability in this Reynolds range. For an individual turbine, there is no performance difference when the rotor is mounted either upstream or downstream of the supporting structure. When placed in-plane, the turbines have no adverse effect on one another. When spaced in-line with 2D separation, there is a 63% reduction in the performance of the downstream turbine. At 6D downstream this performance reduction is still 59%, indicating some wake recovery between 2D and 6D, though the influence from the upstream rotor persists to at least 6D downstream of the first device. In contrast the performance of the downstream turbine when placed at 1.5D offset of the upstream device at 6D downstream is approximately recovered to the individual turbine performance.
Resumo:
BACKGROUND: Despite vaccines and improved medical intensive care, clinicians must continue to be vigilant of possible Meningococcal Disease in children. The objective was to establish if the procalcitonin test was a cost-effective adjunct for prodromal Meningococcal Disease in children presenting at emergency department with fever without source.
METHODS AND FINDINGS: Data to evaluate procalcitonin, C-reactive protein and white cell count tests as indicators of Meningococcal Disease were collected from six independent studies identified through a systematic literature search, applying PRISMA guidelines. The data included 881 children with fever without source in developed countries.The optimal cut-off value for the procalcitonin, C-reactive protein and white cell count tests, each as an indicator of Meningococcal Disease, was determined. Summary Receiver Operator Curve analysis determined the overall diagnostic performance of each test with 95% confidence intervals. A decision analytic model was designed to reflect realistic clinical pathways for a child presenting with fever without source by comparing two diagnostic strategies: standard testing using combined C-reactive protein and white cell count tests compared to standard testing plus procalcitonin test. The costs of each of the four diagnosis groups (true positive, false negative, true negative and false positive) were assessed from a National Health Service payer perspective. The procalcitonin test was more accurate (sensitivity=0.89, 95%CI=0.76-0.96; specificity=0.74, 95%CI=0.4-0.92) for early Meningococcal Disease compared to standard testing alone (sensitivity=0.47, 95%CI=0.32-0.62; specificity=0.8, 95% CI=0.64-0.9). Decision analytic model outcomes indicated that the incremental cost effectiveness ratio for the base case was £-8,137.25 (US $ -13,371.94) per correctly treated patient.
CONCLUSIONS: Procalcitonin plus standard recommended tests, improved the discriminatory ability for fatal Meningococcal Disease and was more cost-effective; it was also a superior biomarker in infants. Further research is recommended for point-of-care procalcitonin testing and Markov modelling to incorporate cost per QALY with a life-time model.