211 resultados para Binding precedents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel series of polymerisable squaramides has been synthesised in high yields using simple chemical reactions, and evaluated in the binding of anionic species. These vinyl monomers can be used as functional building blocks in co-polymerisations with a plethora of co-monomers or cross-linkers, grace to their compatibility with free-radical polymerisation reactions. Aromatic substituted squaramides were found to be the strongest receptors, while binding of certain anions was accompanied by a strong colour change, attributed to the de-protonation of the squaramide. The best performing squaramide monomers were incorporated in molecularly imprinted polymers (MIPs) targeting a model anion and their capacities and selectivity were evaluated by rebinding experiments. Polymers prepared using the new squaramide monomers were compared to urea based co-polymers, and were found to contain up to 80% of the theoretical maximum number of binding sites, an exceptionally high value compared to previous reports. Strong polymer colour changes were observed upon rebinding of certain anions, equivalent to those witnessed in solution, paving the way for application of such materials in anion sensing devices.



Graphical abstract: Polymerisable squaramide receptors for anion binding and sensing

Relevância:

20.00% 20.00%

Publicador:

Resumo:


Abstract Image

A high-capacity diffusive gradients in thin films (DGT) technique has been developed for measurement of total dissolved inorganic arsenic (As) using a long shelf life binding gel layer containing hydrous zirconium oxide (Zr-oxide). Both As(III) and As(V) were rapidly accumulated in the Zr-oxide gel and could be quantitatively recovered by elution using 1.0 M NaOH for freshwater or a mixture of 1.0 M NaOH and 1.0 M H2O2 for seawater. DGT uptake of As(III) and As(V) increased linearly with deployment time and was independent of pH (2.0–9.1), ionic strength (0.01–750 mM), the coexistence of phosphate (0.25–10 mg P L–1), and the aging of the Zr-oxide gel up to 24 months after production. The capacities of the Zr-oxide DGT were 159 μg As(III) and 434 μg As(V) per device for freshwater and 94 μg As(III) and 152 μg As(V) per device for seawater. These values were 5–29 times and 3–19 times more than those reported for the commonly used ferrihydrite and Metsorb DGTs, respectively. Deployments of the Zr-oxide DGT in As-spiked synthetic seawater provided accurate measurements of total dissolved inorganic As over the 96 h deployment, whereas ferrihydrite and Metsorb DGTs only measured the concentrations accurately up to 24 and 48 h, respectively. Deployments in soils showed that the Zr-oxide DGT was a reliable and robust tool, even for soil samples heavily polluted with As. In contrast, As in these soils was underestimated by ferrihydrite and Metsorb DGTs due to insufficient effective capacities, which were likely suppressed by the competing effects of phosphate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sex hormone binding globulin (SHBG) is a glycoprotein composed of two 373-amino-acid subunits. The SHBG gene and a promotor region have been identified. The SHBG receptor has yet to be cloned but is known to act through a G-protein-linked second-messenger system following plasma membrane binding. The principal function of SHBG has traditionally been considered to be that of a transport protein for sex steroids, regulating circulating concentrations of free (unbound) hormones and their transport to target tissues. Recent research suggests that SHBG has functions in addition to the binding and transport of sex steroids. Observational studies have associated a low SHBG concentration with an increased incidence of type 2 diabetes mellitus (DM) independent of sex hormone levels in men and women. Genetic studies using Mendelian randomization analysis linking three single nucleotide polymorphisms of the SHBG gene to risk of developing type 2 DM suggest SHBG may have a role in the pathogenesis of type 2 DM. The correlation between SHBG and insulin resistance that is evident in a number of cross-sectional studies is in keeping with the suggestion that the association between SHBG and incidence of type 2 DM is explained by insulin resistance. Several potential mechanisms may account for this association, including the identification of dietary factors that influence SHBG gene transcription. Further research to characterize the SHBG-receptor and the SHBG second messenger system is required. An interventional study examining the effects on insulin resistance of altering SHBG concentrations may help in determining whether this association is causal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NAD(P)H quinone oxidoreductase 1 is involved in antioxidant defence and protection from cancer, stabilizing the apoptosis regulator p53 towards degradation. Here, we studied the enzymological, biochemical and biophysical properties of two cancer-associated variants (p.R139W and p.P187S). Both variants (especially p.187S) have lower thermal stability and greater susceptibility to proteolysis compared to the wild-type. p.P187S also has reduced activity due to a lower binding affinity for the FAD cofactor as assessed by activity measurements and direct titrations. Native gel electrophoresis and dynamic light scattering also suggest that p.P187S has a higher tendency to populate unfolded states under native conditions. Detailed thermal stability studies showed that all variants irreversibly denature causing dimer dissociation, while addition of FAD restores the stability of the polymorphic forms to wild-type levels. The kinetic destabilization induced by polymorphisms as well as the kinetic protection exerted by FAD was confirmed by measuring denaturation kinetics at temperatures close to physiological. Our data suggest that the main molecular mechanisms associated with these cancer-related variants are their low binding affinity for FAD and/or kinetic instability. Thus, pharmacological chaperones may be useful in the treatment of patients bearing these polymorphisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type III galactosemia is an inherited disease caused by mutations which affect the activity of UDP-galactose 4'-epimerase (GALE). We evaluated the impact of four disease-associated variants (p.N34S, p.G90E, p.V94M and p.K161N) on the conformational stability and dynamics of GALE. Thermal denaturation studies showed that wild-type GALE denatures at temperatures close to physiological, and disease-associated mutations often reduce GALE's thermal stability. This denaturation is under kinetic control and results partly from dimer dissociation. The natural ligands, NAD(+) and UDP-glucose, stabilize GALE. Proteolysis studies showed that the natural ligands and disease-associated variations affect local dynamics in the N-terminal region of GALE. Proteolysis kinetics followed a two-step irreversible model in which the intact protein is cleaved at Ala38 forming a long-lived intermediate in the first step. NAD(+) reduces the rate of the first step, increasing the amount of undigested protein whereas UDP-glucose reduces the rate of the second step, increasing accumulation of the intermediate. Disease-associated variants affect these rates and the amounts of protein in each state. Our results also suggest communication between domains in GALE. We hypothesize that, in vivo, concentrations of natural ligands modulate GALE stability and that it should be possible to discover compounds which mimic the stabilising effects of the natural ligands overcoming mutation-induced destabilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A revised water model intended for use in condensed phase simulations in the framework of the self consistent polarizable ion tight binding theory is constructed. The model is applied to water monomer, dimer, hexamers, ice, and liquid, where it demonstrates good agreement with theoretical results obtained by more accurate methods, such as DFT and CCSD(T), and with experiment. In particular, the temperature dependence of the self diffusion coefficient in liquid water predicted by the model, closely reproduces experimental curves in the temperature interval between 230 K and 350 K. In addition, and in contrast to standard DFT, the model properly orders the relative densities of liquid water and ice. A notable, but inevitable, shortcoming of the model is underestimation of the static dielectric constant by a factor of two. We demonstrate that the description of inter and intramolecular forces embodied in the tight binding approximation in quantum mechanics leads to a number of valuable insights which can be missing from ab initio quantum chemistry and classical force fields. These include a discussion of the origin of the enhanced molecular electric dipole moment in the condensed phases, and a detailed explanation for the increase of coordination number in liquid water as a function of temperature and compared with ice-leading to insights into the anomalous expansion on freezing. The theory holds out the prospect of an understanding of the currently unexplained density maximum of water near the freezing point. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a model for stoichiometric and reduced titanium dioxide intended for use in molecular dynamics and other atomistic simulations and based in the polarizable ion tight binding theory. This extends the model introduced in two previous papers from molecular and liquid applications into the solid state, thus completing the task of providing a comprehensive and unified scheme for studying chemical reactions, particularly aimed at problems in catalysis and electrochemistry. As before, experimental results are given priority over theoretical ones in selecting targets for model fitting, for which we used crystal parameters and band gaps of titania bulk polymorphs, rutile and anatase. The model is applied to six low index titania surfaces, with and without oxygen vacancies and adsorbed water molecules, both in dissociated and non-dissociated states. Finally, we present the results of molecular dynamics simulation of an anatase cluster with a number of adsorbed water molecules and discuss the role of edge and corner atoms of the cluster. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As is now well established, a first order expansion of the Hohenberg-Kohn total energy density functional about a trial input density, namely, the Harris-Foulkes functional, can be used to rationalize a non self consistent tight binding model. If the expansion is taken to second order then the energy and electron density matrix need to be calculated self consistently and from this functional one can derive a charge self consistent tight binding theory. In this paper we have used this to describe a polarizable ion tight binding model which has the benefit of treating charge transfer in point multipoles. This admits a ready description of ionic polarizability and crystal field splitting. It is necessary in constructing such a model to find a number of parameters that mimic their more exact counterparts in the density functional theory. We describe in detail how this is done using a combination of intuition, exact analytical fitting, and a genetic optimization algorithm. Having obtained model parameters we show that this constitutes a transferable scheme that can be applied rather universally to small and medium sized organic molecules. We have shown that the model gives a good account of static structural and dynamic vibrational properties of a library of molecules, and finally we demonstrate the model's capability by showing a real time simulation of an enolization reaction in aqueous solution. In two subsequent papers, we show that the model is a great deal more general in that it will describe solvents and solid substrates and that therefore we have created a self consistent quantum mechanical scheme that may be applied to simulations in heterogeneous catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Following progress of the dapivirine (DPV)-releasing silicone elastomer (SE) vaginal ring (VR) into Phase III clinical studies, there is now interest in developing next-generation rings that additionally provide contraception. Levonorgestrel (LNG) is a safe and effective progestin that is being widely considered for use as a hormonal contraceptive agent in future multipurpose prevention technology (MPT) products. Although LNG has previously been incorporated into various controlled release SE devices, minimal attention has focused on its propensity to irreversibly react with addition cure SE systems. Here, for the first time, we investigate this LNG binding phenomenon and outline strategies for overcoming it.
Methods: VRs containing various loadings of DPV and LNG were manufactured and in vitro release assessed. Different LNG-only SE samples were also prepared to assess the following parameters: (i) addition cure vs. condensation cure SEs; (ii) different types of addition cure SEs; (iii) mixing time, (iv) cure temperature, (v) cure time; and (vi) LNG particle size. After manufacture, the LNG-only samples were assayed for total drug content using a solvent extraction method. The SE curing reaction and the LNG binding reaction was probed using nuclear magnetic resonance (NMR) spectroscopy. Results:
Under certain drug/formulation/processing conditions, LNG was not recoverable from VRs. Further studies using non-ring samples showed that: (a) the phenomenon was only observed with addition cure SEs (and not condensation cure SEs); (b) the extent of binding was dependent upon the type of addition cure SE; (c) micronised LNG showed significantly greater binding than non-micronised LNG; (d) the extent of binding correlated with increased mixing time, cure time and cure temperature.
Conclusions: Careful control of the API characteristics, the SE composition, and the manufacturing conditions will be necessary to establish a practical VR formulation for controlled release of LNG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tegumental allergen-like (TAL) proteins from Schistosoma mansoni are part of a family of calcium binding proteins found only in parasitic flatworms. These proteins have attracted interest as potential drug or vaccine targets, yet comparatively little is known about their biochemistry. Here, we compared the biochemical properties of three members of this family: SmTAL1 (Sm22.6), SmTAL2 (Sm21.7) and SmTAL3 (Sm20.8). Molecular modelling suggested that, despite similarities in domain organisation, there are differences in the three proteins’ structures. SmTAL1 was predicted to have two functional calcium binding sites and SmTAL2 was predicted to have one. Despite the presence of two EF-hand-like structures in SmTAL3, neither was predicted to be functional. These predictions were confirmed by native gel electrophoresis, intrinsic fluorescence and differential scanning fluorimetry: both SmTAL1 and SmTAL2 are able to bind calcium ions reversibly, but SmTAL3 is not. SmTAL1 is also able to interact with manganese, strontium, iron(II) and nickel ions. SmTAL2 has a different ion binding profile interacting with cadmium, manganese, magnesium, strontium and barium ions in addition to calcium. All three proteins form dimers and, in contrast to some Fasciola hepatica proteins from the same family; dimerization is not affected by calcium ions. SmTAL1 interacts with the anti-schistosomal drug praziquantel and the calmodulin antagonists trifluoperazine, chlorpromazine and W7. SmTAL2 interacts only with W7. SmTAL3 interacts with the aforementioned calmodulin antagonists and thiamylal, but not praziquantel. Overall, these data suggest that the proteins have different biochemical properties and thus, most likely, different in vivo functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CCAAT enhancer binding protein α (C/EBPα) plays an essential role in cellular differentiation, growth, and energy metabolism. Here, we investigate the correlation between C/EBPα and hepatocellular carcinoma (HCC) patient outcomes and how C/EBPα protects cells against energy starvation. Expression of C/EBPα protein was increased in the majority of HCCs examined (191 pairs) compared with adjacent nontumor liver tissues in HCC tissue microarrays. Its upregulation was correlated significantly with poorer overall patient survival in both Kaplan-Meier survival (P = 0.017) and multivariate Cox regression (P = 0.028) analyses. Stable C/EBPα-silenced cells failed to establish xenograft tumors in nude mice due to extensive necrosis, consistent with increased necrosis in human C/EBPα-deficient HCC nodules. Expression of C/EBPα protected HCC cells in vitro from glucose and glutamine starvation-induced cell death through autophagy-involved lipid catabolism. Firstly, C/EBPα promoted lipid catabolism during starvation, while inhibition of fatty acid beta-oxidation significantly sensitized cell death. Secondly, autophagy was activated in C/EBPα-expressing cells, and the inhibition of autophagy by ATG7 knockdown or chloroquine treatment attenuated lipid catabolism and subsequently sensitized cell death. Finally, we identified TMEM166 as a key player in C/EBPα-mediated autophagy induction and protection against starvation.

CONCLUSION: The C/EBPα gene is important in that it links HCC carcinogenesis to autophagy-mediated lipid metabolism and resistance to energy starvation; its expression in HCC predicts poorer patient prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Neisseria meningitidis can cause severe infection in humans. Polymorphism of Complement Factor H (CFH) is associated with altered risk of invasive meningococcal disease (IMD). We aimed to find whether polymorphism of other complement genes altered risk and whether variation of N. meningitidis factor H binding protein (fHBP) affected the risk association.

METHODS: We undertook a case-control study with 309 European cases and 5,200 1958 Birth Cohort and National Blood Service cohort controls. We used additive model logistic regression, accepting P<0.05 as significant after correction for multiple testing. The effects of fHBP subfamily on the age at infection and severity of disease was tested using the independent samples median test and Student's T test. The effect of CFH polymorphism on the N. meningitidis fHBP subfamily was investigated by logistic regression and Chi squared test.

RESULTS: Rs12085435 A in C8B was associated with odds ratio (OR) of IMD (0.35 [95% CI 0.19-0.67]; P = 0.03 after correction). A CFH haplotype tagged by rs3753396 G was associated with IMD (OR 0.56 [95% CI 0.42-0.76], P = 1.6x10-4). There was no bacterial load (CtrA cycle threshold) difference associated with carriage of this haplotype. Host CFH haplotype and meningococcal fHBP subfamily were not associated. Individuals infected with meningococci expressing subfamily A fHBP were younger than those with subfamily B fHBP meningococci (median 1 vs 2 years; P = 0.025).

DISCUSSION: The protective CFH haplotype alters odds of IMD without affecting bacterial load for affected heterozygotes. CFH haplotype did not affect the likelihood of infecting meningococci having either fHBP subfamily. The association between C8B rs12085435 and IMD requires independent replication. The CFH association is of interest because it is independent of known functional polymorphisms in CFH. As fHBP-containing vaccines are now in use, relationships between CFH polymorphism and vaccine effectiveness and side-effects may become important.