214 resultados para BANDWIDTH MEASUREMENTS
Resumo:
Data obtained with any research tool must be reproducible, a concept referred to as reliability. Three techniques are often used to evaluate reliability of tools using continuous data in aging research: intraclass correlation coefficients (ICC), Pearson correlations, and paired t tests. These are often construed as equivalent when applied to reliability. This is not correct, and may lead researchers to select instruments based on statistics that may not reflect actual reliability. The purpose of this paper is to compare the reliability estimates produced by these three techniques and determine the preferable technique. A hypothetical dataset was produced to evaluate the reliability estimates obtained with ICC, Pearson correlations, and paired t tests in three different situations. For each situation two sets of 20 observations were created to simulate an intrarater or inter-rater paradigm, based on 20 participants with two observations per participant. Situations were designed to demonstrate good agreement, systematic bias, or substantial random measurement error. In the situation demonstrating good agreement, all three techniques supported the conclusion that the data were reliable. In the situation demonstrating systematic bias, the ICC and t test suggested the data were not reliable, whereas the Pearson correlation suggested high reliability despite the systematic discrepancy. In the situation representing substantial random measurement error where low reliability was expected, the ICC and Pearson coefficient accurately illustrated this. The t test suggested the data were reliable. The ICC is the preferred technique to measure reliability. Although there are some limitations associated with the use of this technique, they can be overcome.
Resumo:
Dynamic switching spectroscopy piezoresponse force microscopy is developed to separate thermodynamic and kinetic effects in local bias-induced phase transitions. The approaches for visualization and analysis of five-dimensional data are discussed. The spatial and voltage variability of relaxation behavior of the a-c domain lead zirconate-titanate surface suggest the interpretation in terms of surface charge dynamics. This approach is applicable to local studies of dynamic behavior in any system with reversible bias-induced phase transitions ranging from ferroelectrics and multiferroics to ionic systems such as batteries, fuel cells, and electroresistive materials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3590919]
Resumo:
Because of its superior time resolution, ultra-wide bandwidth (UWB) transmission can be a highly accurate technique for ranging in indoor localization systems. Nevertheless, the presence of obstructions may deteriorate the ranging performance of the system. Indoor environments are often densely populated with people. However, t h e effect of the human body presence has been scarcely investigated so far within the UWB ranging context. In this work, we investigate this effect by conducting UWB measurements and analyzing the ranging performance of the system. Two measurement campaigns were performed in the 3-5.5 GHz band, in an anechoic chamber and a laboratory environment. The range estimates were obtained by employing the threshold-based first peak detection technique. Analysis results revealed that the human body significantly attenuates the direct-path signal component. On the other hand, in this study it does not introduce a significant range error since the length difference between the diffracted paths around the body and the direct-path is less than the spatial resolution of the measurement setup. © 2012 IEEE.
Resumo:
Aim - To evaluate the reproducibility of the background fundus autofluorescence measurements obtained using a confocal scanning laser ophthalmoscope. Methods - 10 normal volunteers and 10 patients with retinal disease were included in the study. One eye per subject was chosen randomly. Five images of the same eye of each individual were obtained, after pupillary dilatation, by two investigators using a confocal scanning laser ophthalmoscope. Background fundus autofluorescence was measured at 7 degrees temporal to the fovea in normal volunteers and between 7 and 15 degrees temporal to the fovea in patients. Within session reproducibility of the measurements obtained by each investigator and interobserver reproducibility were evaluated. Results - For investigator 1 the median values of fundus autofluorescence obtained were 31.9 units for normal volunteers and 27.3 units for patients. The median largest difference in readings in normal volunteers was 5.7 units (range 1.4-13.5 units) and in patients 4.2 units (1.5-15.1 units). For investigator 2 the median values of fundus autofluorescence obtained were 28.9 units for normal volunteers and 27.4 units for patients. The median largest difference in readings in normal volunteers was 3.6 units (2.7-11.7 units), and in patients 4.1 units (1.5-9.3 units). The median interobserver difference in readings in normal volunteers was 3.3 units and for patients 6.6 units. The median greatest interobserver difference in measurements obtained for normal volunteers was 8.8 units (8.4-23.0 units) and for patients 11.1 units (7.1-40.8 units). Conclusion - Within session reproducibility of the measurements of background fundus autofluorescence was satisfactory. Although interobserver reproducibility was moderate, the variability of the measurements of fundus autofluorescence between observers appears to be small when compared with variation in fundus autofluorescence with age and disease.