202 resultados para Arterial-wall regeneration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent development of the massive multiple-input multiple-output (MIMO) paradigm, has been extensively based on the pursuit of favorable propagation: in the asymptotic limit, the channel vectors become nearly orthogonal and interuser interference tends to zero [1]. In this context, previous studies
have considered fixed inter-antenna distance, which implies an increasing array aperture as the number of elements increases. Here, we focus on a practical, space-constrained topology, where an increase in the number of antenna elements in a fixed total space imposes an inversely proportional decrease in the inter-antenna distance. Our analysis shows that, contrary to existing studies, inter-user interference does not vanish in the massive MIMO regime, thereby creating a saturation effect on the achievable rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the progress made at JET-ILW on integrating the requirements of the reference ITER baseline scenario with normalized confinement factor of 1, at a normalized pressure of 1.8 together with partially detached divertor whilst maintaining these conditions over many energy confinement times. The 2.5 MA high triangularity ELMy H-modes are studied with two different divertor configurations with D-gas injection and nitrogen seeding. The power load reduction with N seeding is reported. The relationship between an increase in energy confinement and pedestal pressure with triangularity is investigated. The operational space of both plasma configurations is studied together with the ELM energy losses and stability of the pedestal of unseeded and seeded plasmas. The achievement of stationary plasma conditions over many energy confinement times is also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For over a decade, controlling domain wall injection, motion and annihilation along nanowires has been the preserve of the nanomagnetics research community. Revolutionary technologies have resulted, like race-track memory and domain wall logic. Until recently, equivalent research in analogous ferroic materials did not seem important. However, with the discovery of sheet conduction, the control of domain walls in ferroelectrics has become vital for the future of what has been termed “domain wall electronics”. Here we report the creation of a ferroelectric domain wall diode, which allows a single direction of motion for all domain walls, irrespective of their polarity, under a series of alternating electric field pulses. The diode’s saw-tooth morphology is central to its function. Domain walls can move readily in the direction in which thickness increases gradually, but are prevented from moving in the other direction by the sudden thickness increase at the saw-tooth edge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research detailing the normal vascular adaptions to high altitude is minimal and often confounded by pathology (e.g. chronic mountain sickness) and methodological issues. We examined vascular function and structure in: (1) healthy lowlanders during acute hypoxia and prolonged (∼2 weeks) exposure to high altitude, and (2) high-altitude natives at 5050 m (highlanders). In 12 healthy lowlanders (aged 32 ± 7 years) and 12 highlanders (Sherpa; 33 ± 14 years) we assessed brachial endothelium-dependent flow-mediated dilatation (FMD), endothelium-independent dilatation (via glyceryl trinitrate; GTN), common carotid intima–media thickness (CIMT) and diameter (ultrasound), and arterial stiffness via pulse wave velocity (PWV; applanation tonometry). Cephalic venous biomarkers of free radical-mediated lipid peroxidation (lipid hydroperoxides, LOOH), nitrite (NO2) and lipid soluble antioxidants were also obtained at rest. In lowlanders, measurements were performed at sea level (334 m) and between days 3–4 (acute high altitude) and 12–14 (chronic high altitude) following arrival to 5050 m. Highlanders were assessed once at 5050 m. Compared with sea level, acute high altitude reduced lowlanders’ FMD (7.9 ± 0.4 vs. 6.8 ± 0.4%; P = 0.004) and GTN-induced dilatation (16.6 ± 0.9 vs. 14.5 ± 0.8%; P = 0.006), and raised central PWV (6.0 ± 0.2vs. 6.6 ± 0.3 m s−1P = 0.001). These changes persisted at days 12–14, and after allometrically scaling FMD to adjust for altered baseline diameter. Compared to lowlanders at sea level and high altitude, highlanders had a lower carotid wall:lumen ratio (∼19%, P ≤ 0.04), attributable to a narrower CIMT and wider lumen. Although both LOOH and NO2 increased with high altitude in lowlanders, only LOOH correlated with the reduction in GTN-induced dilatation evident during acute (n = 11, r = −0.53) and chronic (n = 7, r = −0.69; P ≤ 0.01) exposure to 5050 m. In a follow-up, placebo-controlled experiment (n = 11 healthy lowlanders) conducted in a normobaric hypoxic chamber (inspired O2 fraction () = 0.11; 6 h), a sustained reduction in FMD was evident within 1 h of hypoxic exposure when compared to normoxic baseline (5.7 ± 1.6 vs. 8.0 ±1.3%; P < 0.01); this decline in FMD was largely reversed following α1-adrenoreceptor blockade. In conclusion, high-altitude exposure in lowlanders caused persistent impairment in vascular function, which was mediated partially via oxidative stress and sympathoexcitation. Although a lifetime of high-altitude exposure neither intensifies nor attenuates the impairments seen with short-term exposure, chronic high-altitude exposure appears to be associated with arterial remodelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the feasibility of manufacturing hydroxyapatite (HA)-based scaffolds using 3D printing technology by incorporating different binding additives, such as maltodextrin and polyvinyl alcohol (PVOH), into the powder formulation. Different grades of PVOH were evaluated in terms of their impact on the printing quality. Results showed that scaffolds with high architectural accuracy in terms of the design and excellent green compressive strength were obtained when the PVOH (high viscosity) was used as the binding additive for HA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the potassium fractional coverage of a cobalt {1010BAR} surface is increased over the range 0.2 to 0.6 monolayer the adlayer passes through a series of phase transitions. A commensurate phase is formed at exactly 0.5 monolayer, and corresponds to adatoms bonded in high-symmetry hollow sites on the unreconstructed cobalt surface, with an effective adatom radius lying between the ionic and covalent radii of potassium. A detailed structural study shows that the structural transitions can be characterised within a one-dimensional Frenkel-Kontorova model, with small lateral displacements of adatoms away from hollow sites in the low and high coverage phases. The low coverage phases progress from a distributed vacancy structure to a low density domain-wall structure; while the high coverage phase formed above half a monolayer is a high density asymmetric domain-wall structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: To assess quantitatively variations in the extent of capillary basement membrane (BM) thickening between different retinal layers and within arterial and venous environments during diabetes.

METHODS: One year after induction of experimental (streptozotocin) diabetes in rats, six diabetic animals together with six age-matched control animals were sacrificed and the retinas fixed for transmission electron microscopy (TEM). Blocks of retina straddling the major arteries and veins in the central retinal were dissected out, embedded in resin, and sectioned. Capillaries in close proximity to arteries or veins were designated as residing in either an arterial (AE) or a venous (VE) environment respectively, and the retinal layer in which each capillary was located was also noted. The thickness of the BM was then measured on an image analyser based two dimensional morphometric analysis system.

RESULTS: In both diabetics and controls the AE capillaries had consistently thicker BMs than the VE capillaries. The BMs of both AE and VE capillaries from diabetics were thicker than those of capillaries in the corresponding retinal layer from the normal rats (p < or = 0.005). Also, in normal AE and VE capillaries and diabetic AE capillaries the BM in the nerve fibre layer (NFL) was thicker than that in either the inner (IPL) or outer (OPL) plexiform layers (p < or = 0.001). However, in diabetic VE capillaries the BMs of capillaries in the NFL were thicker than those of capillaries in the IPL (p < or = 0.05) which, in turn, had thicker BMs than capillaries in the OPL (p < or = 0.005).

CONCLUSIONS: The variation in the extent of capillary BM thickening between different retinal layers within AE and VE environments may be related to differences in levels of oxygen tension and oxidative stress in the retina around arteries compared with that around veins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: To determine the incidence and predictive factors of rib fracture and chest wall pain after lung stereotactic ablative radiotherapy (SABR).

MATERIALS AND METHODS: Patients were treated with lung SABR of 48-60 Gy in four to five fractions. The treatment plan and follow-up computed tomography scans of 289 tumours in 239 patients were reviewed. Dose-volume histogram (DVH) metrics and clinical factors were evaluated as potential predictors of chest wall toxicity.

RESULTS: The median follow-up was 21.0 months (range 6.2-52.1). Seventeen per cent (50/289) developed a rib fracture, 44% (22/50) were symptomatic; the median time to fracture was 16.4 months. On univariate analysis, female gender, osteoporosis, tumours adjacent (within 5 mm) to the chest wall and all of the chest wall DVH metrics predicted for rib fracture, but only tumour location adjacent to the chest wall remained significant on the multivariate model (P < 0.01). The 2 year fracture-free probability for those adjacent to the chest wall was 65.6%. Among those tumours adjacent to the chest wall, only osteoporosis (P = 0.02) predicted for fracture, whereas none of the chest wall DVH metrics were predictive. Eight per cent (24/289) experienced chest wall pain without fracture.

CONCLUSIONS: None of the chest wall DVH metrics independently predicted for SABR-induced rib fracture when tumour location is taken into account. Patients with tumours adjacent (within 5 mm) to the chest wall are at greater risk of rib fracture after lung SABR, and among these, an additional risk was observed in osteoporotic patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contemporary architecture has tended to increase envelope insulation levels in an unceasing effort to reduce U-values. Traditional masonry architecture in contrast was devoid of insulation, except for the inherent insulative nature of vernacular materials. Also the consistency of the outer membrane of the building skin diminished any impact due to bridging. In contemporary highly insulated walls bridges are numerous due to the necessity to bind inner and outer structural skins through insulation layers. This paper examines thermal bridging in an example of contemporary façade design and compares it with an example of traditional vernacular architecture currently being researched which is characterized by a lack of bridging elements. Focus is given to heavy weight materials of high thermal mass, which appropriately for passive architecture help moderate fluctuations in internal temperature. In an extensive experimental study samples of highly insulated precast concrete sandwich panels and lime rendered masonry walls are tested in a guarded hot-box. The building construction methods are compared for static and dynamic thermal transmittance, via heat flux and surface temperature differential measurements. Focus is given to the differential heat loss due to the thermal bridging in the sandwich panels and its associated impact on overall heat loss relative to traditional masonry construction.