243 resultados para Arsenic tolerance
Resumo:
Pollution of subterranean water by arsenic (As) in Asia has resulted in the worst chemical disaster in human history. For populations living on subsistence rice diets, As contamination of rice grain contributes greatly to dietary As exposure. The main objectives of this study were to compare two dehusking processes: (a) wet process (soaking of rice, boiling and mechanical hulling) and (b) dry process (mechanical hulling), and recommend the method leading to a lower As content in commercial rice. In general, hulling of paddy rice (373 mu g As kg(-1)) significantly decreased As content in rice grain (311 mu g As kg(-1)). The final As concentrations in boiled rice (final product of the wet process) and atab rice (dry process) were 332 and 290 mu g kg(-1). Thus, the dry method is recommended for dehusking paddy rice if not As-free water is available. However, villagers can reduce the As content in the wet system by discarding the soaking water and using new water for the light boiling. Finally, it is not recommended to use rice husk for feeding animals because the As concentration is very high, approximately 1,000 mu g As kg(-1).
Resumo:
Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5–6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.
Resumo:
Tolerance allocation is an important step in the design process. It is necessary to produce high quality components cost-effectively. However, the process of allocating tolerances can be time consuming and difficult, especially for complex models. This work demonstrates a novel CAD based approach, where the sensitivities of product dimensions to changes in the values of the feature parameters in the CAD model are computed. These are used to automatically establish the assembly response function for the product. This information has been used to automatically allocate tolerances to individual part dimensions to achieve specified tolerances on the assembly dimensions, even for tolerance allocation in more than one direction simultaneously. It is also shown how pre-existing constraints on some of the part dimensions can be represented and how situations can be identified where the required tolerance allocation is not achievable. A methodology is also presented that uses the same information to model a component with different amounts of dimensional variation to simulate the effects of tolerance stack-up. © 2014 Springer-Verlag France.
Resumo:
Patterns of arsenic excretion were followed in a cohort (n = 6) eating a defined rice diet, 300 g per day d.wt. where arsenic speciation was characterized in cooked rice, following a period of abstinence from rice, and other high arsenic containing foods. A control group who did not consume rice were also monitored. The rice consumed in the study contained inorganic arsenic and dimethylarsinic acid (DMA) at a ratio of 1:1, yet the urine speciation was dominated by DMA (90%). At steady state (rice consumption/urinary excretion) similar to 40% of rice derived arsenic was excreted via urine. By monitoring of each urine pass throughout the day it was observed that there was considerable variation (up to 13-fold) for an individual's total arsenic urine content, and that there was a time dependent variation in urinary total arsenic content. This calls into question the robustness of routinely used first pass/spot check urine sampling for arsenic analysis. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Image
A high-capacity diffusive gradients in thin films (DGT) technique has been developed for measurement of total dissolved inorganic arsenic (As) using a long shelf life binding gel layer containing hydrous zirconium oxide (Zr-oxide). Both As(III) and As(V) were rapidly accumulated in the Zr-oxide gel and could be quantitatively recovered by elution using 1.0 M NaOH for freshwater or a mixture of 1.0 M NaOH and 1.0 M H2O2 for seawater. DGT uptake of As(III) and As(V) increased linearly with deployment time and was independent of pH (2.0–9.1), ionic strength (0.01–750 mM), the coexistence of phosphate (0.25–10 mg P L–1), and the aging of the Zr-oxide gel up to 24 months after production. The capacities of the Zr-oxide DGT were 159 μg As(III) and 434 μg As(V) per device for freshwater and 94 μg As(III) and 152 μg As(V) per device for seawater. These values were 5–29 times and 3–19 times more than those reported for the commonly used ferrihydrite and Metsorb DGTs, respectively. Deployments of the Zr-oxide DGT in As-spiked synthetic seawater provided accurate measurements of total dissolved inorganic As over the 96 h deployment, whereas ferrihydrite and Metsorb DGTs only measured the concentrations accurately up to 24 and 48 h, respectively. Deployments in soils showed that the Zr-oxide DGT was a reliable and robust tool, even for soil samples heavily polluted with As. In contrast, As in these soils was underestimated by ferrihydrite and Metsorb DGTs due to insufficient effective capacities, which were likely suppressed by the competing effects of phosphate.
Resumo:
In wetland-adapted plants, such as rice, it is typically root apexes, sites of rapid entry for water/nutrients, where radial oxygen losses (ROLs) are highest. Nutrient/toxic metal uptake therefore largely occurs through oxidized zones and pH microgradients. However, the processes controlling the acquisition of trace elements in rice have been difficult to explore experimentally because of a lack of techniques for simultaneously measuring labile trace elements and O2/pH. Here, we use new diffusive gradients in thin films (DGT)/planar optode sandwich sensors deployed in situ on rice roots to demonstrate a new geochemical niche of greatly enhanced As, Pb, and Fe(II) mobilization into solution immediately adjacent to the root tips characterized by O2 enrichment and low pH. Fe(II) mobilization was congruent to that of the peripheral edge of the aerobic root zone, demonstrating that the Fe(II) mobilization maximum only developed in a narrow O2 range as the oxidation front penetrates the reducing soil. The Fe flux to the DGT resin at the root apexes was 3-fold higher than the anaerobic bulk soil and 27 times greater than the aerobic rooting zone. These results provide new evidence for the importance of coupled diffusion and oxidation of Fe in modulating trace metal solubilization, dispersion, and plant uptake.
Resumo:
The optimisation of Fe and Al oxyhydroxide materials produced using industrial grade coagulants is presented in this work. The effects of synthesis pH and post-synthesis washing procedure onto the arsenic adsorption capacity of the materials were investigated. It was shown that the materials produced at higher pH were more efficient in removing As(V), especially after cleaning procedure. The materials produced at lower pH were less efficient in removing As(V) but the higher presence of sulphate groups in the materials produced at lower pH enhanced As(III) adsorption. Most performing materials can remove up to 84.7 mg As(V) g-1 or 77.9 mg As(III) g-1.
Resumo:
Inorganic arsenic (Asi) is a chronic, non-threshold carcinogen. Rice and rice-based products can be the major source of Asi for many subpopulations. Baby rice, rice cereals and rice crackers are widely used to feed infants and young children. The Asi concentration in rice-based products may pose a health risk for infants and young children. Asi concentration was determined in rice-based products produced in the European Union and risk assessment associated with the consumption of these products by infants and young children, and compared to an identical US FDA survey. There are currently no European Union or United States of America regulations applicable to Asi in food. However, this study suggests that the samples evaluated may introduce significant concentration of Asi into infants’ and young children’s diets. Thus, there is an urgent need for regulatory limits on Asi in food, especially for baby rice-based products.
Resumo:
In this work, the removal of arsenic from aqueous solutions onto thermally processed dolomite is investigated. The dolomite was thermally processed (charred) at temperatures of 600, 700 and 800 degrees C for 1, 2, 4 and 8 h. Isotherm experiments were carried out on these samples over a wide pH range. A complete arsenic removal was achieved over the pH range studied when using the 800 degrees C charred dolomite. However, at this temperature, thermal degradation of the dolomite weakens its structure due to the decomposition of the magnesium carbonate, leading to a partial dissolution. For this reason, the dolomitic sorbent chosen for further investigations was the 8 h at 700 degrees C material. Isotherm studies indicated that the Langmuir model was successful in describing the process to a better extent than the Freundlich model for the As(V) adsorption on the selected charred dolomite. However, for the As(III) adsorption, the Freundlich model was more successful in describing the process. The maximum adsorption capacities of charred dolomite for arsenite and arsenate ions are 1.846 and 2.157 mg/g, respectively. It was found that both the pseudo first- and second-order kinetic models are able to describe the experimental data (R-2 > 0.980). The data suggest the charring process allows dissociation of the dolomite to calcium carbonate and magnesium oxide, which accelerates the process of arsenic oxide and arsenic carbonate precipitation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Background: Tobacco smoke is a major risk to the health of its users and arsenic is among the components of smoke present at concentrations of toxicological concern. There are significant variations in human toxicity between inorganic and organic arsenic species and the aim of this study was to determine whether there are predictable relationships among major arsenic species in tobacco that could be useful for risk assessment.
Methods: 14 samples of tobacco were studied spanning a wide range of concentrations in samples from different geographical regions, including certified reference materials and cigarette products. Inorganic and major organic arsenic species were extracted from powdered tobacco samples by nitric acid using microwave digestion. Concentrations of arsenic species in these extracts were determined using HPLC-ICPMS.
Results: The concentrations of total inorganic arsenic species range from 144 to 3914 mu g kg(-1), while organic species dimethylarsinic acid (DMA) ranges from 21 to 176 mu g As kg(-1), and monomethylarsonic acid (MA) ranges from 30 to 116 mu g kg(-1). The percentage of species eluted compared to the total arsenic extracted ranges from 11.1 to 36.8% suggesting that some As species (possibly macro-molecules, strongly complexed or in organic forms) do not elute from the column. This low percentage of column-speciated arsenic is indicative that more complex forms of arsenic exist in the tobacco. All the analysed species correlate positively with total arsenic concentration over the whole compositional range and regression analysis indicates a consistent ratio of about 4:1 in favour of inorganic arsenic compared with MA + DMA.
Conclusions: The dominance of inorganic arsenic species among those components analysed is a marked feature of the diverse range of tobaccos selected for study. Such consistency is important in the context of a WHO expert panel recommendation to regulate tobacco crops and products using total arsenic concentration. If implemented more research would be required to develop models that accurately predict the smoker's exposure to reduced inorganic arsenic species on the basis of leaf or product concentration and product design features.
Resumo:
Previous studies have demonstrated that rice cultivated under flooded conditions has higher concentrations of arsenic (As) but lower cadmium (Cd) compared to rice grown in unsaturated soils. To validate such effects over long terms under Mediterranean conditions a field experiment, conducted over 7 successive years was established in SW Spain. The impact of water management on rice production and grain arsenic (As) and cadmium (Cd) was measured, and As speciation was determined to inform toxicity evaluation. Sprinkler irrigation was compared to traditional flooding.
Both irrigation techniques resulted in similar grain yields (similar to 3000 kg grain ha(-1)). Successive sprinkler irrigation over 7 years decreased grain total As to one-sixth its initial concentration in the flooded system (0.55 to 0.09 mg As kg(-1)), while one cycle of sprinkler irrigation also reduced grain total As by one-third (0.20 mg kg(-1)). Grain inorganic As concentration increased up to 2 folds under flooded conditions compared to sprinkler irrigated fields while organic As was also lower in sprinkler system treatments, but to a lesser extent. This suggests that methylation is favored under water logging. However, sprinkler irrigation increased Cd transfer to grain by a factor of 10, reaching 0.05 mg Cd kg(-1) in 7 years. Sprinlder systems in paddy fields seem particularly suited for Mediterranean climates and are able to mitigate against excessive As accumulation, but our evidence shows that an increased Cd load in rice grain may result.
Resumo:
The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of,300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel). This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.
Resumo:
Arsenic (As) is ubiquitous in the environment in the carcinogenic inorganic forms, posing risks to human health in many parts of the world. Many microorganisms have evolved a series of mechanisms to cope with inorganic arsenic in their growth media such as transforming As compounds into volatile derivatives. Bio-volatilization of As has been suggested to play an important role in global As biogeochemical cycling, and can also be explored as a potential method for arsenic bioremediation. This review aims to provide an overview of the quality and quantity of As volatilization by fungi, bacteria, microalga and protozoans. Arsenic bio-volatilization is influenced by both biotic and abiotic factors that can be manipulated/elucidated for the purpose of As bioremediation. Since As bio-volatilization is a resurgent topic for both biogeochemistry and environmental health, our review serves as a concept paper for future research directions.