191 resultados para Accelerated vulcanisation
Resumo:
We present a new regime to generate high-energy quasimonoenergetic proton beams in a "slow-pulse" regime, where the laser group velocity vg<c is reduced by an extended near-critical density plasma. In this regime, for properly matched laser intensity and group velocity, ions initially accelerated by the light sail (LS) mode can be further trapped and reflected by the snowplough potential generated by the laser in the near-critical density plasma. These two acceleration stages are connected by the onset of Rayleigh-Taylor-like (RT) instability. The usual ion energy spectrum broadening by RT instability is controlled and high quality proton beams can be generated. It is shown by multidimensional particle-in-cell simulation that quasimonoenergetic proton beams with energy up to hundreds of MeV can be generated at laser intensities of 1021W/cm2.
Resumo:
The Bcr-Abl kinase inhibitor, imatinib mesylate, is the front line treatment for chronic myeloid leukaemia (CML), but the emergence of imatinib resistance has led to the search for alternative drug treatments and the examination of combination therapies to overcome imatinib resistance. The pro-apoptotic PBOX compounds are a recently developed novel series of microtubule targeting agents (MTAs) that depolymerise tubulin. Recent data demonstrating enhanced MTA-induced tumour cell apoptosis upon combination with the cyclin dependent kinase (CDK)-1 inhibitor flavopiridol prompted us to examine whether this compound could similarly enhance the effect of the PBOX compounds. We thus characterised the apoptotic and cell cycle events associated with combination therapy of the PBOX compounds and flavopiridol and results showed a sequence dependent, synergistic enhancement of apoptosis in CML cells including those expressing the imatinib-resistant T315I mutant. Flavopiridol reduced the number of polyploid cells formed in response to PBOX treatment but only to a small extent, suggesting that inhibition of endoreplication was unlikely to play a major role in the mechanism by which flavopiridol synergistically enhanced PBOX-induced apoptosis. The addition of flavopiridol following PBOX-6 treatment did however result in an accelerated exit from the G2/M transition accompanied by an enhanced downregulation and deactivation of the CDK1/cyclin B1 complex and an enhanced degradation of the inhibitor of apoptosis protein (IAP) survivin. In conclusion, results from this study highlight the potential of these novel series of PBOX compounds, alone or in sequential combination with flavopiridol, as an effective therapy against CML.
Resumo:
Microarray technology has recently accelerated the study of the molecular events involved in prostate cancer, offering the prospect of more precise prognosis and new therapeutic strategies. This review summarises current knowledge of the molecular pathology of prostate cancer. The expression and function of numerous genes have been shown to be altered in prostate cancer. Many of these genes are involved in cell cycle regulation, steroid hormone metabolism or regulation of gene expression. The mechanisms by which androgen independence arises are discussed, including cross-activation, gene amplification and point mutations of the androgen receptor. Analysis of changes in the levels of expression of large numbers of genes during prostate cancer progression have provided a better understanding of the basis of the disease, yielding new molecular markers, such as hepsin, with potential use in diagnosis and prognosis.
Resumo:
Monitoring of BCR-ABL transcripts has become established practice in the management of chronic myeloid leukemia. However, nucleic acid amplification techniques are prone to variations which limit the reliability of real-time quantitative PCR (RQ-PCR) for clinical decision making, highlighting the need for standardization of assays and reporting of minimal residual disease (MRD) data. We evaluated a lyophilized preparation of a leukemic cell line (K562) as a potential quality control reagent. This was found to be relatively stable, yielding comparable respective levels of ABL, GUS and BCR-ABL transcripts as determined by RQ-PCR before and after accelerated degradation experiments as well as following 5 years storage at -20 degrees C. Vials of freeze-dried cells were sent at ambient temperature to 22 laboratories on four continents, with RQ-PCR analyses detecting BCR-ABL transcripts at levels comparable to those observed in primary patient samples. Our results suggest that freeze-dried cells can be used as quality control reagents with a range of analytical instrumentations and could enable the development of urgently needed international standards simulating clinically relevant levels of MRD.
Resumo:
The paper addresses the quality of the interface and edge bonded joints in layers of cross-laminated timber (CLT) panels. The shear performance was studied to assess the suitability of two different adhesives, Polyurethane (PUR) and Phenol-Resorcinol-Formaldehyde (PRF), and to determine the optimum clamping pressure. Since there is no established testing procedure to determine the shear strength of the surface bonds between layers in a CLT panel, block shear tests of specimens in two different configurations were carried out, and further shear tests of edge bonded specimen in two configurations were performed. Delamination tests were performed on samples which were subjected to accelerated aging to assess the durability of bonds in severe environmental conditions. Both tested adhesives produced boards with shear strength values within the edge bonding requirements of prEN 16351 for all manufacturing pressures. While the PUR specimens had higher shear strength values, the PRF specimens demonstrated superior durability characteristics in the delamination tests. It seems that the test protocol introduced in this study for crosslam bonded specimens, cut from a CLT panel, and placed in the shearing tool horizontally, accurately reflects the shearing strength of glue lines in CLT.
Proton acceleration enhanced by a plasma jet in expanding foils undergoing relativistic transparency
Resumo:
Ion acceleration driven by the interaction of an ultraintense (2 × 1020 W cm-2) laser pulse with an ultrathin ( nm) foil target is experimentally and numerically investigated. Protons accelerated by sheath fields and via laser radiation pressure are angularly separated and identified based on their directionality and signature features (e.g. transverse instabilities) in the measured spatial-intensity distribution. A low divergence, high energy proton component is also detected when the heated target electrons expand and the target becomes relativistically transparent during the interaction. 2D and 3D particle-in-cell simulations indicate that under these conditions a plasma jet is formed at the target rear, supported by a self-generated azimuthal magnetic field, which extends into the expanded layer of sheath-accelerated protons. Electrons trapped within this jet are directly accelerated to super-thermal energies by the portion of the laser pulse transmitted through the target. The resulting streaming of the electrons into the ion layers enhances the energy of protons in the vicinity of the jet. Through the addition of a controlled prepulse, the maximum energy of these protons is demonstrated experimentally and numerically to be sensitive to the picosecond rising edge profile of the laser pulse.
Resumo:
The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 1019W cm-2) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10-20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8-10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.
Resumo:
Current data-intensive image processing applications push traditional embedded architectures to their limits. FPGA based hardware acceleration is a potential solution but the programmability gap and time consuming HDL design flow is significant. The proposed research approach to develop “FPGA based programmable hardware acceleration platform” that uses, large number of Streaming Image processing Processors (SIPPro) potentially addresses these issues. SIPPro is pipelined in-order soft-core processor architecture with specific optimisations for image processing applications. Each SIPPro core uses 1 DSP48, 2 Block RAMs and 370 slice-registers, making the processor as compact as possible whilst maintaining flexibility and programmability. It is area efficient, scalable and high performance softcore architecture capable of delivering 530 MIPS per core using Xilinx Zynq SoC (ZC7Z020-3). To evaluate the feasibility of the proposed architecture, a Traffic Sign Recognition (TSR) algorithm has been prototyped on a Zedboard with the color and morphology operations accelerated using multiple SIPPros. Simulation and experimental results demonstrate that the processing platform is able to achieve a speedup of 15 and 33 times for color filtering and morphology operations respectively, with a significant reduced design effort and time.
Resumo:
In 1974, pursuing his interest in the infra-ordinary – ‘the banal, the quotidian, the obvious, the common, the ordinary, the back-ground noise, the habitual’ – Georges Perec wrote about an idea for a novel:
‘I imagine a Parisian apartment building whose façade has been removed … so that all the rooms in the front, from the ground floor up to the attics, are instantly and simultaneously visible’.
In Life A User’s Manual (1978) the consummation of this precis, patterns of existence are measured within architectural space with an archaeological sensibility that sifts through narrative and décor, structure and history, services and emotion, the personal and the system, ascribing commensurate value to each.
Apartment comes from the Italian appartare meaning ‘to separate’. The space of the boundary between activities is reduced to a series of intimately thin lines: the depth of a floor, a party wall, a window, the convex peep-hole in a door, or the façade that Perec seeks to render invisible. The apartness of the apartment is accelerated when aligned with short-term tenancies. Here Perec’s interweaving of personal histories over time using the structure of the block, gives way to convivialities of detachment: inhabitants are temporary, their personalities anonymous, their activities unknown or overlooked.
Borrowing methods from Perec, to move somewhere between conjecture, analysis and other documentation and tracing relationships between form, structure, materiality, technology, organisation, tenure and narrative use, this paper interrogates the late twentieth-century speculative apartment block in Britain and Ireland arguing that its speculative and commodified purpose allows a series of lives that are often less than ordinary to inhabit its spaces.
Henri Lefebvre described the emergence of an ‘abstract space’ under capitalism in terms which can be applied to the apartment building: the division of space into freely alienable privatised parcels which can be exchanged. Vertical distributions of class and other new, contiguous social and spatial relationships are couched within a paradox: the building which allows such proximities is also a conductor of division. Apartment comes from the Italian appartare meaning ‘to separate’. The space of the boundary between activities is reduced to a series of intimately thin lines: the depth of a floor, a party wall, a window, the convex peep-hole in a door, or the façade that Perec seeks to render invisible. The apartness of the apartment is accelerated when aligned with short-term tenancies. Here Perec’s interweaving of personal histories over time using the structure of the block, gives way to convivialities of detachment: inhabitants are temporary, their personalities anonymous, their activities unknown or overlooked.
Resumo:
In 1862, Glasgow Corporation initiated the first of a series of three legislative acts which would become known collectively as the City Improvements Acts. Despite having some influence on the nature of the built fabric on the expanding city as a whole, the most extensive consequences of these acts was reserved for one specific area of the city, the remnants of the medieval Old Town. As the city had expanded towards all points of the compass in a regular, grid-iron structure throughout the nineteenth century, the Old Town remained singularly as a densely wrought fabric of medieval wynds, vennels, oblique passageways and accelerated tenementalisation. Here, as the rest of the city began to assume the form of an ordered entity, visible and classifiable, one could still find and addresses such as ‘Bridgegate, No. 29, backland, stair first left, three up, right lobby, door facing’ (quoted in Pacione, 1995).
Unsurprisingly, this place, where proximity to the midden (dung-heap) was considered an enviable position, was seen by the authorities as a major health hazard and a source not only of cholera, but also of the more alarming typhoid epidemic of 1842. Accordingly, the demolitions which occurred in the backlands of the Old Town under the first of the acts, the Glasgow Police Act of 1862, were justified on health and medical grounds. But disease was not the only social problem thought to issue from this district. Reports from social reformers including Fredrick Engels suggested that the decay of the area’s physical fabric could be extended to the moral profile of its inhabitants. This was in such a state of degeneracy that there were calls for a nearby military barracks to be relocated to more salubrious climes because troops were routinely coming into contact ‘with the most dissolute and profligate portion of the population’ (Peter Clonston, Lord Provost, June 1861). Perhaps more worrying for the city fathers, however, was that the barracks’ arsenal was seen as a potential source of arms for the militant and often illegal cotton workers’ unions and organisations who inhabited the Old Town as well as the districts to the east. In fact, the Old Town and East End had been the site of numerous working class actions and riots since 1787, including a strike of 60,000 workers in 1820, 100,000 in 1838, and the so-called Bread Riots of 1848 where shouts of ‘Vive La Revolution’ were reported in the Gallowgate.
The events in Paris in 1848 precipitated Baron Hausmann’s interventions into that city. The boulevards were in turn visited by members of Glasgow Corporation and ultimately, it can be argued, provided an example for Old Town Glasgow. This paper suggests that the city improvement acts carried a similarly complex and pervasive agenda, one which embodied not only health, class conflict and sexual morality but also the more local condition of sectarianism. And, like in Paris, these were played out spatially in a extensive reconfiguration of the urban fabric of the Old Town which, through the creation of new streets and a railway yard, not only made it more amenable to large scale military manoeuvres but also, opened up the area to capitalist accumulation. By the end of the works, the medieval heritage of the Old Town had been almost completely razed, the working class and Catholic East End had, through the insertion of the railway yard, been isolated from the city centre and approximately 70,000 people had been made homeless.
Resumo:
Background: LL-37, composed of 37 amino acid residues, is an innate host defence peptide of the cathelicidin family. It is expressed by neutrophils, monocytes and epithelial cells and exhibits both anti-bacterial and immunomodulatory properties. LL-37 is however prone to proteolytic degradation by proteinases, thus potentially limiting its inherent host defence properties in the inflammatory milieu. Objectives: The present study was designed to determine whether LL-37 was degraded by components of gingival crevicular fluid (GCF) from healthy subjects or those with periodontitis. In addition, we aimed to deduce whether degradation of the peptide was accelerated in GCF samples which were determined to be positive for the periodontopathic bacterium Porphyromonas gingivalis. Methods: GCF and bacterial plaque samples, pre- and post non-surgical periodontal treatment, were collected from 4 individual sites in patients presenting with advanced periodontitis. In healthy subjects, GCF samples only were collected. Plaque samples were analysed by QPCR for the presence or absence of P. gingivalis. Pooled GCF samples from healthy sites; periodontitis sites which were P. gingivalis negative (Pg-); or periodontitis sites which were P. gingivalis positive (Pg+), were incubated with synthetic LL-37 for 0 – 180 min. The degradation products were then analysed by matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF MS). Results: LL-37 was not degraded when incubated with GCF from healthy subjects. In contrast, LL-37 was degraded after 30 min when incubated with Pg- GCF. However degradation of LL-37 was apparent after only 2 min incubation with Pg+ GCF and the parent molecule was almost completely degraded after 30 min. Conclusions: The rapid degradation of LL-37, particularly in Pg+ sites, highlights the limited role which this host defence peptide may play in the presence of biologically active proteinases. It also underscores a potent virulence mechanism of P. gingivalis used to circumvent innate host responses.